@article{AIF_1993__43_5_1387_0, author = {Siu, Yum-Tong}, title = {An effective {Matsusaka} big theorem}, journal = {Annales de l'Institut Fourier}, pages = {1387--1405}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {5}, year = {1993}, doi = {10.5802/aif.1378}, mrnumber = {95f:32035}, zbl = {0803.32017}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1378/} }
TY - JOUR AU - Siu, Yum-Tong TI - An effective Matsusaka big theorem JO - Annales de l'Institut Fourier PY - 1993 SP - 1387 EP - 1405 VL - 43 IS - 5 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1378/ DO - 10.5802/aif.1378 LA - en ID - AIF_1993__43_5_1387_0 ER -
Siu, Yum-Tong. An effective Matsusaka big theorem. Annales de l'Institut Fourier, Volume 43 (1993) no. 5, pp. 1387-1405. doi : 10.5802/aif.1378. http://archive.numdam.org/articles/10.5802/aif.1378/
[D1] Champs magnétiques et inégalités de Morse pour la cohomologie, Compte-Rendus Acad. Sci, Série I, 301 (1985), 119-122 and Ann. Inst. Fourier, 35-4 (1985), 189-229. | Numdam | Zbl
,[D2] A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. | MR | Zbl
,[EL] Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, preprint, 1992.
and ,[F] On polarized manifolds whose adjoint bundles are not semipositive, Proceedings of the 1985 Sendai Conference on Algebraic Geometry, Advanced Studies in Pure Mathematics, 10 (1987), 167-178. | MR | Zbl
,[K] Effective base point freeness, Math. Ann., to appear. | Zbl
,[KM] Riemann-Roch type inequalities, Amer. J. Math., 105 (1983), 229-252. | MR | Zbl
and ,[L] Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1969. | Zbl
,[LM] Matsusaka's Big Theorem (Algebraic Geometry, Arcata 1974), Proceedings of Symposia in Pure Math., 29 (1975), 513-530. | MR | Zbl
and ,[M1] On canonically polarized varieties II, Amer. J. Math., 92 (1970), 283-292. | MR | Zbl
,[M2] Polarized varieties with a given Hilbert polynomial, Amer. J. Math., 94 (1972), 1027-1077. | MR | Zbl
,[N] Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 7299-7300 and Ann. of Math., 132 (1990), 549-596. | Zbl
,[S] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. | MR | Zbl
,Cited by Sources: