Superharmonic extension and harmonic approximation
Annales de l'Institut Fourier, Tome 44 (1994) no. 1, pp. 65-91.

Soient Ω un ouvert de n et E une partie de Ω. Nous caractérisons les paires (Ω,E) qui nous permettent d’étendre les fonctions surharmoniques de E à Ω, ou d’approcher les fonctions sur E par les fonctions harmoniques sur Ω.

Let Ω be an open set in n and E be a subset of Ω. We characterize those pairs (Ω,E) which permit the extension of superharmonic functions from E to Ω, or the approximation of functions on E by harmonic functions on Ω.

@article{AIF_1994__44_1_65_0,
     author = {Gardiner, Stephen J.},
     title = {Superharmonic extension and harmonic approximation},
     journal = {Annales de l'Institut Fourier},
     pages = {65--91},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {44},
     number = {1},
     year = {1994},
     doi = {10.5802/aif.1389},
     mrnumber = {95a:31006},
     zbl = {0795.31004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1389/}
}
TY  - JOUR
AU  - Gardiner, Stephen J.
TI  - Superharmonic extension and harmonic approximation
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 65
EP  - 91
VL  - 44
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1389/
DO  - 10.5802/aif.1389
LA  - en
ID  - AIF_1994__44_1_65_0
ER  - 
%0 Journal Article
%A Gardiner, Stephen J.
%T Superharmonic extension and harmonic approximation
%J Annales de l'Institut Fourier
%D 1994
%P 65-91
%V 44
%N 1
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1389/
%R 10.5802/aif.1389
%G en
%F AIF_1994__44_1_65_0
Gardiner, Stephen J. Superharmonic extension and harmonic approximation. Annales de l'Institut Fourier, Tome 44 (1994) no. 1, pp. 65-91. doi : 10.5802/aif.1389. http://archive.numdam.org/articles/10.5802/aif.1389/

[1] N.U. Arakeljan, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR, Ser. Mat., 3 (1968), 273-286 (Russian); Amer. Math. Soc. Transl., (2) 122 (1984), 85-97. | MR | Zbl

[2] D.H. Armitage, On the extension of superharmonic functions, J. London Math. Soc., (2) 4 (1971), 215-230. | MR | Zbl

[3] D.H. Armitage and M. Goldstein, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (3) 68 (1994), 112-126. | MR | Zbl

[4] T. Bagby and P. Blanchet, Uniform harmonic approximation on Riemannian manifolds, J. Analyse Math., to appear. | Zbl

[5] T. Bagby and P.M. Gauthier, Uniform approximation by global harmonic functions, in Approximation by Solutions of Partial Differential Equations, ed. B. Fuglede et al., NATO ASI Series, Kluwer, Dordrecht, 1992, pp. 15-26. | MR | Zbl

[6] D.M. Campbell, J.G. Clunie and W.K. Hayman, Research problems in complex analysis, in Aspects of Contemporary Complex Analysis, ed. D.A. Brannan and J.G. Clunie, Academic Press, New York, 1980, pp. 527-572. | MR | Zbl

[7] J. Deny, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier, Grenoble, 1 (1949), 103-113. | Numdam

[8] J.L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc., 77 (1954), 86-121. | MR | Zbl

[9] J.L. Doob, Classical potential theory and its probabilistic counterpart, Springer, New York, 1983.

[10] P.M. Gauthier, M. Goldstein and W.H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc., 261 (1980), 169-183. | MR | Zbl

[11] P.M. Gauthier, M. Goldstein and W.H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc., (2) 28 (1983), 71-82. | MR | Zbl

[12] M. Goldstein and W.H. Ow, A characterization of harmonic Arakelyan sets, Proc. Amer. Math. Soc., 119 (1993), 811-816. | MR | Zbl

[13] L.L. Helms, Introduction to potential theory, Krieger, New York, 1975.

[14] M.V. Keldyš, On the solvability and stability of the Dirichlet problem, Uspehi Mat. Nauk, 8 (1941), 171-231 (Russian); Amer. Math. Soc. Transl., 51 (1966), 1-73. | Zbl

[15] M. Labrèche, De l'approximation harmonique uniforme, Doctoral thesis, Université de Montréal, 1982.

[16] Premalatha, On a superharmonic extension, Rev. Roum. Math. Pures Appl., 26 (1981), 631-640. | MR | Zbl

[17] A.A. Saginjan, On tangential harmonic approximation and some related problems, Complex Analysis I, Lecture Notes in Mathematics 1275, Springer, Berlin (1987), 280-286. | MR | Zbl

Cité par Sources :