Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann ζ-function
Annales de l'Institut Fourier, Tome 45 (1995) no. 1, pp. 143-159.

On démontre qu’un sous-espace d’un espace de Hilbert de fonctions holomorphes est complètement défini par ses distances aux noyaux reproduisants. Une méthode simple est proposée pour localiser les zéros simultanés d’un sous-espace de l’espace de Hardy. À titre d’illustration on montre une famille de disques du plan complexe sans zéro de la fonction ζ de Riemann.

It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann ζ-function.

@article{AIF_1995__45_1_143_0,
     author = {Nikolski, Nikolai},
     title = {Distance formulae and invariant subspaces, with an application to localization of zeros of the {Riemann} $\zeta $-function},
     journal = {Annales de l'Institut Fourier},
     pages = {143--159},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {45},
     number = {1},
     year = {1995},
     doi = {10.5802/aif.1451},
     mrnumber = {96c:47005},
     zbl = {0816.30026},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1451/}
}
TY  - JOUR
AU  - Nikolski, Nikolai
TI  - Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function
JO  - Annales de l'Institut Fourier
PY  - 1995
SP  - 143
EP  - 159
VL  - 45
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1451/
DO  - 10.5802/aif.1451
LA  - en
ID  - AIF_1995__45_1_143_0
ER  - 
%0 Journal Article
%A Nikolski, Nikolai
%T Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function
%J Annales de l'Institut Fourier
%D 1995
%P 143-159
%V 45
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1451/
%R 10.5802/aif.1451
%G en
%F AIF_1995__45_1_143_0
Nikolski, Nikolai. Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function. Annales de l'Institut Fourier, Tome 45 (1995) no. 1, pp. 143-159. doi : 10.5802/aif.1451. https://www.numdam.org/articles/10.5802/aif.1451/

[B] A. Beurling, A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. USA, 41, n° 5 (1995), 312-314. | MR | Zbl

[DSS] P. Duren, H. Shapiro and A. Shields, Singular measures and domains not of Smirnov type, Duke Math. Journal, 33 (1966), 247-254. | MR | Zbl

[H] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. reine angew. Math., 422 (1991), 45-68. | MR | Zbl

[He] H. Hedenmalm, An invariant subspace of the Bergman space having the codimension two property, J. reine angew. Math., 443 (1993), 1-9. | Zbl

[Ho] K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, NJ, 1962. | MR | Zbl

[K] B. Korenblum, Closed ideals of the ring An, Functional Analysis and its applications, 6, n° (1972), 38-52. | MR | Zbl

[Ko] B. Korenblum, A Beurling type theorem, Acta Math., 138 (1977), 265-293. | MR | Zbl

[KR] T.L. Kriete and M. Rosenblum, A Phragmén-Lindelöf theorem with applications to M(u, v) functions, Pacific J. Math., 43 (1972), 175-188. | MR | Zbl

[N] N.K. Nikolski, Treatise on the shift operator, Springer-Verlag, Heidelberg, 1986.

[Ni] N.K. Nikolski, Invitation aux techniques des espaces de Hardy, EDM, Université Bordeaux-1, 1992, p. 1-69.

[Nik] N.K. Nikolski, Two problems on spectral synthesis, Lect. Notes Math., Springer-Verlag, 1043 (1984), 378-381.

[Ny] B. Nyman, On some groups and semi-groups of translations, Thesis, Uppsala, 1950.

[Sh] N. Shirokov, Analytic functions smooth up to the boundary, Lect. Notes Math., v. 1312, Springer-Verlag, 1988. | MR | Zbl

[V] V.I. Vasyunin, On a biorthogonal function system related to the Riemann hypothesis, Algebra i Analiz (St. Petersburg Math. J.), to appear. | MR | Zbl

  • Sebbar, Ahmed; Gay, Roger Arithmetic and Analysis of the Series n=11nsinxn, Complex Analysis and Operator Theory, Volume 15 (2021) no. 3 | DOI:10.1007/s11785-021-01097-4
  • Darses, Sébastien; Hillion, Erwan On probabilistic generalizations of the Nyman-Beurling criterion for the zeta function, Confluentes Mathematici, Volume 13 (2021) no. 1, p. 43 | DOI:10.5802/cml.71
  • Nikolski, Nikolaï Hardy Spaces, 2019 | DOI:10.1017/9781316882108
  • Oliveira, Willian D. Zeros of Dirichlet polynomials via a density criterion, Journal of Number Theory, Volume 203 (2019), p. 80 | DOI:10.1016/j.jnt.2018.02.001
  • Bilokopytov, Eugene Principal minor assignment, isometries of Hilbert spaces, volumes of parallelepipeds and rescaling of sesqui-holomorphic functions, Linear Algebra and its Applications, Volume 580 (2019), p. 37 | DOI:10.1016/j.laa.2019.06.010
  • Castro Perelman, C. On the Riemann Hypothesis, complex scalings and logarithmic time reversal, Journal of Geometry and Physics, Volume 129 (2018), p. 133 | DOI:10.1016/j.geomphys.2018.03.002
  • Das, Namita; Sahoo, Madhusmita Domination of Berezin Transform, Vietnam Journal of Mathematics, Volume 43 (2015) no. 3, p. 609 | DOI:10.1007/s10013-014-0104-0
  • Karaev, M. T. Reproducing Kernels and Berezin Symbols Techniques in Various Questions of Operator Theory, Complex Analysis and Operator Theory, Volume 7 (2013) no. 4, p. 983 | DOI:10.1007/s11785-012-0232-z
  • Delaunay, C.; Fricain, E.; Mosaki, E.; Robert, O. Zero-free regions for Dirichlet series (II), Mathematische Zeitschrift, Volume 273 (2013) no. 3-4, p. 999 | DOI:10.1007/s00209-012-1041-9
  • Delaunay, C.; Fricain, E.; Mosaki, E.; Robert, O. Zero-free regions for Dirichlet series, Transactions of the American Mathematical Society, Volume 365 (2012) no. 6, p. 3227 | DOI:10.1090/s0002-9947-2012-05735-7
  • CASTRO, CARLOS ON STRATEGIES TOWARDS THE RIEMANN HYPOTHESIS: FRACTAL SUPERSYMMETRIC QM AND A TRACE FORMULA, International Journal of Geometric Methods in Modern Physics, Volume 04 (2007) no. 05, p. 861 | DOI:10.1142/s0219887807002338
  • Karaev, M.T.; Saltan †, S. Some results on Berezin symbols, Complex Variables, Theory and Application: An International Journal, Volume 50 (2005) no. 3, p. 185 | DOI:10.1080/02781070500032861
  • Báez-Duarte, Luis; Balazard, Michel; Landreau, Bernard; Saias, Eric Notes sur la fonction ζ de Riemann, 3, Advances in Mathematics, Volume 149 (2000) no. 1, p. 130 | DOI:10.1006/aima.1999.1861
  • Shimorin, S. M. Approximate spectral synthesis in the Bergman space, Duke Mathematical Journal, Volume 101 (2000) no. 1 | DOI:10.1215/s0012-7094-00-10111-1
  • Fricain, E. Uniqueness theorems for analytic vector-valued functions, Journal of Mathematical Sciences, Volume 101 (2000) no. 3, p. 3193 | DOI:10.1007/bf02673744
  • Balazard, Michel; Saias, Eric Notes sur la fonctionζde Riemann, 1, Advances in Mathematics, Volume 139 (1998) no. 2, p. 310 | DOI:10.1006/aima.1998.1760

Cité par 16 documents. Sources : Crossref