Dans cet article nous prouvons des inégalités de Poincaré associées à une famille de champs de vecteurs satisfaisant l’hypothèse de Hörmander et qui sont aussi nouvelles dans le cas sans poids. Nous obtenons une nouvelle formule de représentation pour une fonction en termes des champs de vecteurs appliqués à la fonction. En particulier, on en déduit une inégalité isopérimétrique relative.
We derive weighted Poincaré inequalities for vector fields which satisfy the Hörmander condition, including new results in the unweighted case. We also derive a new integral representation formula for a function in terms of the vector fields applied to the function. As a corollary of the versions of Poincaré’s inequality, we obtain relative isoperimetric inequalities.
@article{AIF_1995__45_2_577_0, author = {Franchi, Bruno and Lu, Guozhen and Wheeden, Richard L.}, title = {Representation formulas and weighted {Poincar\'e} inequalities for {H\"ormander} vector fields}, journal = {Annales de l'Institut Fourier}, pages = {577--604}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {2}, year = {1995}, doi = {10.5802/aif.1466}, mrnumber = {96i:46037}, zbl = {0820.46026}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1466/} }
TY - JOUR AU - Franchi, Bruno AU - Lu, Guozhen AU - Wheeden, Richard L. TI - Representation formulas and weighted Poincaré inequalities for Hörmander vector fields JO - Annales de l'Institut Fourier PY - 1995 SP - 577 EP - 604 VL - 45 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1466/ DO - 10.5802/aif.1466 LA - en ID - AIF_1995__45_2_577_0 ER -
%0 Journal Article %A Franchi, Bruno %A Lu, Guozhen %A Wheeden, Richard L. %T Representation formulas and weighted Poincaré inequalities for Hörmander vector fields %J Annales de l'Institut Fourier %D 1995 %P 577-604 %V 45 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1466/ %R 10.5802/aif.1466 %G en %F AIF_1995__45_2_577_0
Franchi, Bruno; Lu, Guozhen; Wheeden, Richard L. Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Annales de l'Institut Fourier, Tome 45 (1995) no. 2, pp. 577-604. doi : 10.5802/aif.1466. http://archive.numdam.org/articles/10.5802/aif.1466/
[BKL] Boman aka John, in preparation.
, and ,[BM1] Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., to appear. | Zbl
and ,[BM2] Proceedings of the Conference “Potential theory and partial differential operators with nonnegative characteristic form”, Parma, February 1994, Kluwer, Amsterdam, to appear.
and ,[Bo] Remarks on Sobolev imbedding inequalities, Lecture Notes in Math. 1351 (1989), 52-68, Springer-Verlag. | MR | Zbl
,[Bu] The Geometry of Geodesics, Academic Press, New York, 1955. | MR | Zbl
,[Ca] Inequalities for the maximal function relative to a metric, Studia Math., 57 (1976), 297-306. | MR | Zbl
,[CDG] Subelliptic mollifiers and a characterization of Rellich and Poincaré domains, Rend. Sem. Mat. Univ. Politec. Torino, 51 (1993), 361-386. | MR | Zbl
, , ,[Ch] Weighted Sobolev's inequality on domains satisfying the Boman chain condition, Proc. Amer. Math. Soc., to appear. | Zbl
,[Cou] Espaces de Lipschitz et inegalités de Poincaré, J. Funct. Anal., to appear. | Zbl
,[CW] Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function, Amer. J. Math., 107 (1985), 1191-1226. | MR | Zbl
and ,[Fe] Geometric Measure Theory, Springer, 1969. | MR | Zbl
,[FP] Subelliptic eigenvalue estimates, Conference on Harmonic Analysis, Chicago, 1980, W. Beckner et al. ed., Wadsworth (1981), 590-606. | Zbl
and ,[F] Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic operators, Trans. Amer. Math. Soc., 327 (1991), 125-158. | MR | Zbl
,[FGaW1] Inégalités isoperimétriques pour des métriques dégénérées, C.R. Acad. Sci. Paris, Sér. I, Math., 317 (1993), 651-654. | MR | Zbl
, and ,[FGaW2] Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann., 300 (1994), 557-571. | MR | Zbl
, and ,[FGuW] Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. P.D.E., 19 (1994), 523-604. | MR | Zbl
, and ,[FL] Hölder regularity for a class of linear non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, (IV) 10 (1983), 523-541. | Numdam | MR | Zbl
and ,[FLW] Weighted Poincaré inequalities for Hörmander vector fields and local regularity for a class of degenerate elliptic equations, Proceedings of the Conference “Potential theory and partial differential operators with nonnegative characteristic form”, Parma, February 1994, Kluwer, Amsterdam, to appear.
, and ,[FS] Pointwise estimates for a class of strongly degenerate elliptic operators, Ann. Scuola Norm. Sup. Pisa, (IV) 14 (1987), 527-568. | Numdam | MR | Zbl
and ,[G] Structures Métriques pour les Variétés Riemanniennes (rédigé par J. Lafontaine et P. Pansu), CEDIC Ed., Paris, 1981. | MR | Zbl
,[GGK] Criteria of general weak type inequalities for integral transforms with positive kernels, Proc. Georgian Acad. Sci. Math., 1 (1993), 11-34. | MR | Zbl
, and ,[H] Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl
,[IN] Hardy-Littlewood inequality for quasiregular mappings in certain domains in ℝn, Ann. Acad. Sci. Fenn. Series A.I. Math., 10 (1985), 267-282. | MR | Zbl
and ,[J] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523. | MR | Zbl
,[L1] Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Revista Mat. Iberoamericana, 8 (1992), 367-439. | MR | Zbl
,[L2] The sharp Poincaré inequality for free vector fields: An endpoint result, Preprint 1992, Revista Mat. Iberoamericana, 10 (2) (1994), 453-466. | MR | Zbl
,[L3] Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type and applications to subelliptic PDE, C.R. Acad. Sci. Paris, to appear. | Zbl
,[L4] Embedding theorems into the Orlicz and Lipschitz spaces and applications to quasilinear subelliptic differential equations, Preprint, February, 1994.
,[L5] A note on Poincaré type inequality for solutions to subelliptic equations, Comm. Partial Differential Equations, to appear. | Zbl
,[LW] (ε, δ) domains, Poincaré domains and extension theorems on weighted Sobolev spaces for degenerate vector fields, in preparation.
and ,[MS-Cos] Analyse sur les boules d'un opérateur sous-elliptique, preprint (1994). | Zbl
and ,[NSW] Balls and metrics defined by vector fields I : basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl
, and ,[RS] Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR | Zbl
and ,[S-Cal] Fundamental solutions and geometry of the sums of squares of vector fields, Invent. Math., 78 (1984), 143-160. | MR | Zbl
,[S-Cos] A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Research Notices (Duke Math. J.), 65(2) (1992), 27-38. | Zbl
,[SW] Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. | MR | Zbl
and ,[W] A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math., 107 (1993), 257-272. | MR | Zbl
,Cité par Sources :