Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 10 (1983) no. 4, pp. 523-541.
@article{ASNSP_1983_4_10_4_523_0,
     author = {Franchi, Bruno and Lanconelli, Ermanno},
     title = {H\"older regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {523--541},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 10},
     number = {4},
     year = {1983},
     mrnumber = {753153},
     zbl = {0552.35032},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1983_4_10_4_523_0/}
}
TY  - JOUR
AU  - Franchi, Bruno
AU  - Lanconelli, Ermanno
TI  - Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1983
SP  - 523
EP  - 541
VL  - 10
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1983_4_10_4_523_0/
LA  - en
ID  - ASNSP_1983_4_10_4_523_0
ER  - 
%0 Journal Article
%A Franchi, Bruno
%A Lanconelli, Ermanno
%T Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1983
%P 523-541
%V 10
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1983_4_10_4_523_0/
%G en
%F ASNSP_1983_4_10_4_523_0
Franchi, Bruno; Lanconelli, Ermanno. Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 10 (1983) no. 4, pp. 523-541. http://archive.numdam.org/item/ASNSP_1983_4_10_4_523_0/

[1] N. Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A, 236 (1978), pp. 139-142. | MR | Zbl

[2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. | MR | Zbl

[3] R.R. Coifman - G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin - Heidelberg - New York, 1971. | MR | Zbl

[4] R.R. Coifman - G. Weiss, Extensions of Hardy Spaces and Their Use in Analysis, Bull. Amer. Math. Soc., 83 (1977), pp. 569-645. | MR | Zbl

[5] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3 (3) (1957), pp. 25-43. | MR | Zbl

[6] E.B. Fabes - C.E. Kenig - R.P. Serapioni, The Local Regularity of Solutions of Degenerate Elliptic Equations, Comm. Partial Differential Equations 7 (1) (1982), pp. 77-116. | MR | Zbl

[7] C. Fefferman - D. Phong, Subelliptic Eigenvalue Problems, Preprint 1981. | MR

[8] B. Franchi - E. Lanconelli, De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 72 (8) (1982), pp. 273-277. | MR | Zbl

[9] B. Franchi - E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Proceedings of the meeting «Linear Partial and Pseudo Differential Operators », Torino (1982), Rend. Sem. Mat. Univ. e Politec. Torino, to appear. | MR | Zbl

[10] B. Franchi - E. Lanconelli, An Embedding Theorem for Sobolev Spaces Related to Non-Smooth Vector Fields and Harnack Inequality, to appear. | Zbl

[11] Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin - Heidelberg - New York, 1977. | MR | Zbl

[12] L. Hörmander, Hypoelliptic Second-Order Differential Equations, Acta Math. 119 (1967), pp. 147-171. | MR | Zbl

[13] I.M. Kolodii, Qualitative Properties of the Generalized Solutions of Degenerate Elliptic Equations, Ukrain. Math. Z., 27 (1975), pp. 320-328 = Ukrainian Math. J., 27 (1975), pp. 256-263. | MR | Zbl

[14] S.N. Kruzkov, Certain Properties of Solutions to Elliptic Equations, Dokl. Akad. Nauk SSSR, 150 (1963), pp. 470-473 = Soviet Math. Dokl., 4 (1963), pp. 686-690. | MR | Zbl

[15] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Probem for Elliptic Differential Equations, Comm. Pure Appl. Math., 13 (1960), pp. 457-468. | MR | Zbl

[16] M.K.V. Murthy - G. Stampacchia, Boundary Value Problems for Some Degenerate-Elliptic Operators, Ann. Mat. Pura Appl., 80 (4) (1968), pp. 1-122. | MR | Zbl

[17] J. Nash, Continuity of Solutions of Parabolic and Elliptic Equations, Amer. J. Math., 80 (1958), pp. 931-954. | MR | Zbl

[18] N.S. Trudinger, Linear Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa, (3) 27 (1973), pp. 265-308. | Numdam | MR | Zbl