We study holomorphic Riemannian metrics on compact complex threefolds. We show that, contrary to the situation in the real domain, a holomorphic Riemannian metric admits a "big" pseudogroup of local isometries. It follows that compact complex simply connected threefolds do not admit any holomorphic Riemannian metric.
Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension . Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension .
Mot clés : variétés complexes, métriques riemanniennes holomorphes, théorie algébrique des invariants, pseudo-groupe d'isométries locales
Keywords: complex manifolds, holomorphic riemannian metrics, algebraic theory of invariants, pseudogroup of local isometries
@article{AIF_2001__51_6_1663_0, author = {Dumitrescu, Sorin}, title = {M\'etriques riemanniennes holomorphes en petite dimension}, journal = {Annales de l'Institut Fourier}, pages = {1663--1690}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {6}, year = {2001}, doi = {10.5802/aif.1870}, mrnumber = {1871285}, zbl = {1016.53051}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.1870/} }
TY - JOUR AU - Dumitrescu, Sorin TI - Métriques riemanniennes holomorphes en petite dimension JO - Annales de l'Institut Fourier PY - 2001 SP - 1663 EP - 1690 VL - 51 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1870/ DO - 10.5802/aif.1870 LA - fr ID - AIF_2001__51_6_1663_0 ER -
%0 Journal Article %A Dumitrescu, Sorin %T Métriques riemanniennes holomorphes en petite dimension %J Annales de l'Institut Fourier %D 2001 %P 1663-1690 %V 51 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1870/ %R 10.5802/aif.1870 %G fr %F AIF_2001__51_6_1663_0
Dumitrescu, Sorin. Métriques riemanniennes holomorphes en petite dimension. Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1663-1690. doi : 10.5802/aif.1870. http://archive.numdam.org/articles/10.5802/aif.1870/
[1] Basic ideas and concepts of differential geometry, Geometry I, E.M.S., Volume 28 (1991)
[2] Compact complex surfaces, Springer-Verlag, 1984 | MR | Zbl
[3] Orbites des structures rigides (d'après M. Gromov), Feuilletages et systèmes intégrables (Montpellier, 1995) (1997), pp. 1-17 | Zbl
[4] Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija, Volume 13 (1979) no. 3, pp. 499-555 | DOI | Zbl
[5] Sur l'image de l'application moment, Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) (1987), pp. 177-192 | Zbl
[6] On holomorphic forms on compact complex threefolds, Comment. Math. Helv., Volume 74 (1999) no. 4, pp. 642-656 | DOI | MR | Zbl
[7] Lectures on transformations groups: geometry and dynamics, Surveys in Differential Geometry (Cambridge) (1990), pp. 19-111 | MR | Zbl
[8] Structures géométriques holomorphes (1999) (Thèse E.N.S.-Lyon) | MR | Zbl
[9] Structures géométriques holomorphes sur les variétés complexes compactes (à paraître aux Annales Scientifiques de l'E.N.S) | Numdam | Zbl
[10] Generalizations of Albanese mappings for non-Kähler manifolds, Geometry and analysis on complex manifolds (1994), pp. 51-62 | Zbl
[11] Rigid transformation groups, Géométrie Différentielle, Travaux en cours, Volume 33 (1988), pp. 65-141 | Zbl
[12] Déformations des structures complexes sur les espaces homogènes de , J. reine angew. Math., Volume 468 (1995), pp. 113-138 | DOI | MR | Zbl
[13] Principles of algebraic geometry, Wiley-interscience publication, 1978 | MR | Zbl
[14] Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, 1975 | Zbl
[15] Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Volume 27 (1980) no. 2, pp. 247-264 | MR | Zbl
[16] The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan, Volume 32 (1980) no. 2, pp. 325-329 | DOI | MR | Zbl
[17] On n dimensional compact varieties with n independent meromorphic functions, Amer. Math. Soc. Transl., Volume 63 (1967), pp. 51-77 | Zbl
[18] Introduction to algebraic geometry (1966)
[19] On local and global existence of Killing vector fields, Ann. of Math. (2), Volume 72 (1960), pp. 105-120 | DOI | MR | Zbl
[20] Infinitesimally homogeneous spaces, Comm. Pure Appl. Math, Volume 13 (1960), pp. 685-697 | DOI | MR | Zbl
[21] Classification theory of algebraic varieties and compact complet spaces, Springer Lect. Notes, Volume 439 (1975) | MR | Zbl
[22] Geometric structures on compact complex analytic surfaces, Topology, Volume 25 (1986) no. 2, pp. 119-153 | DOI | MR | Zbl
[23] Spaces of constant curvature, McGraw-Hill Series in Higher Math. (1967) | MR | Zbl
Cited by Sources: