On certain homotopy actions of general linear groups on iterated products
Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1719-1739.

The n-fold product X n of an arbitrary space usually supports only the obvious permutation action of the symmetric group Σ n . However, if X is a p-complete, homotopy associative, homotopy commutative H-space one can define a homotopy action of GL n ( p ) on X n . In various cases, e.g. if multiplication by p r is null homotopic then we get a homotopy action of GL n (/p r ) for some r. After one suspension this allows one to split X n using idempotents of 𝔽 p GL n (/p) which can be lifted to 𝔽 p GL n (/p r ). In fact all of this is possible if X is an H-space whose homology algebra H * (X;BbbZ/p) is commutative and nilpotent. For n=2 we make some explicit calculations of splittings of Σ( SO (4)× SO (4)), Σ(Ω 2 S 3 ×Ω 2 S 3 ),and Σ(G 2 ×G 2 ).

Habituellement le produit de n copies d’un espace arbitraire ne soutient que l’action de permutation du groupe symétrique Σ n . Cependant, si X est un H-espace, p- complet, associatif et commutatif à homotopie près on peut définir une action à homotopie près de GL n ( p ) sur X n . Dans divers cas, par exemple, si la multiplication par p r est nulle homotopique, on obtient une action à homotopie près de GL n (/p r ) pour certains r. Après une suspension cela permet de décomposer X n en utilisant des idempotents de 𝔽 p GL n (/p) qui peuvent être relevés sur BbbF p GL n (/p r ). En fait, tout ceci est possible si X est un H-espace pour lequel l’algèbre H * (X;/p) est commutative et nilpotente. Pour n=2 nous faisons des calculs explicites de décomposition de Σ( SO (4)× SO (4)), Σ(Ω 2 S 3 ×Ω 2 S 3 ),et Σ(G 2 ×G 2 ).

DOI: 10.5802/aif.1872
Classification: 55P45, 55R35, 20C20
Keywords: splittings, $H$-spaces
Mot clés : décompositions, $H$-espaces
Levi, Ran 1; Priddy, Stewart 2

1 University of Aberdeen, Department of Mathematics, Aberdeen (Grande-Bretagne)
2 Northwestern University, Department of Mathematics, Evanston IL 60208 (USA)
@article{AIF_2001__51_6_1719_0,
     author = {Levi, Ran and Priddy, Stewart},
     title = {On certain homotopy actions of general linear groups on iterated products},
     journal = {Annales de l'Institut Fourier},
     pages = {1719--1739},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {6},
     year = {2001},
     doi = {10.5802/aif.1872},
     mrnumber = {1871287},
     zbl = {0990.55003},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1872/}
}
TY  - JOUR
AU  - Levi, Ran
AU  - Priddy, Stewart
TI  - On certain homotopy actions of general linear groups on iterated products
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 1719
EP  - 1739
VL  - 51
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1872/
DO  - 10.5802/aif.1872
LA  - en
ID  - AIF_2001__51_6_1719_0
ER  - 
%0 Journal Article
%A Levi, Ran
%A Priddy, Stewart
%T On certain homotopy actions of general linear groups on iterated products
%J Annales de l'Institut Fourier
%D 2001
%P 1719-1739
%V 51
%N 6
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1872/
%R 10.5802/aif.1872
%G en
%F AIF_2001__51_6_1719_0
Levi, Ran; Priddy, Stewart. On certain homotopy actions of general linear groups on iterated products. Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1719-1739. doi : 10.5802/aif.1872. http://archive.numdam.org/articles/10.5802/aif.1872/

[1] D. Benson Polynomial Invariants of Finite Groups, L.M.S. Lecture Notes in Mathematics, Volume 190 (1993) | MR | Zbl

[2] A.K. Bousfield; D. Kan Homotopy Limits, Completions and Localizations, Springer Lecture Notes in Mathematics, Volume 304 (1972) | DOI | MR | Zbl

[3] E. Devinatz; J. Smith; M. Hopkins Nilpotence and stable homotopy theory. I, Ann. of Math. (2), Volume 128 (1988), pp. 207-241 | DOI | MR | Zbl

[4] J. Harris; N. Kuhn Stable decompositions of classifying spaces of finite abelian p-groups, Math. Proc. Camb. Phil. Soc., Volume 103 (1988), pp. 427-449 | DOI | MR | Zbl

[5] N. Kuhn; S. Priddy The transfer and Whitehead's conjecture, Math. Proc. Cambridge Philos. Soc., Volume 98 (1985), pp. 459-480 | DOI | MR | Zbl

[6] M. Mahowald A new infinite family in 2 π * s , Topology, Volume 16 (1977), pp. 249-256 | DOI | MR | Zbl

[7] S. Mitchell On the Steinberg module, representations of the symmetric groups, and the Steenrod algebra, J. Pure Appl. Algebra, Volume 39 (1986), pp. 275-281 | DOI | MR | Zbl

[8] S. Mitchell Finite complexes with A(n)-free cohomology, Topology, Volume 24 (1985), pp. 227-246 | DOI | MR | Zbl

[9] S. Mitchell; S. Priddy Stable splittings derived from the Steinberg module, Topology, Volume 22 (1983), pp. 219-232 | MR | Zbl

Cited by Sources: