For each 2-dimensional complex torus , we construct a compact complex manifold with a -action, which compactifies such that the quotient of by the -action is biholomorphic to . For a general , we show that has no non-constant meromorphic functions.
Pour tout tore complexe de dimension 2, nous construisons une variété complexe compacte munie d’une action de qui compactifie de sorte que le quotient de par l’action de soit biholomorphe à . Pour un tore général , nous montrons que n’a pas de fonction méromorphe non constante.
Keywords: compactification, complex torus
Mot clés : compactification, tore complexe
@article{AIF_2002__52_1_245_0, author = {Hwang, Jun-Muk and Varolin, Dror}, title = {A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions}, journal = {Annales de l'Institut Fourier}, pages = {245--253}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {1}, year = {2002}, doi = {10.5802/aif.1884}, zbl = {0995.32011}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1884/} }
TY - JOUR AU - Hwang, Jun-Muk AU - Varolin, Dror TI - A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions JO - Annales de l'Institut Fourier PY - 2002 SP - 245 EP - 253 VL - 52 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1884/ DO - 10.5802/aif.1884 LA - en ID - AIF_2002__52_1_245_0 ER -
%0 Journal Article %A Hwang, Jun-Muk %A Varolin, Dror %T A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions %J Annales de l'Institut Fourier %D 2002 %P 245-253 %V 52 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1884/ %R 10.5802/aif.1884 %G en %F AIF_2002__52_1_245_0
Hwang, Jun-Muk; Varolin, Dror. A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions. Annales de l'Institut Fourier, Volume 52 (2002) no. 1, pp. 245-253. doi : 10.5802/aif.1884. http://archive.numdam.org/articles/10.5802/aif.1884/
[DPS] Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., Volume 3 (1994), pp. 295-345 | MR | Zbl
[G] Äquivariante Kompaktifizierungen des , Math. Zeit., Volume 206 (1991), pp. 211-217 | MR | Zbl
[H] Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-Heidelberg-New York, 1970 | MR | Zbl
[KP] Formal cohomology, analytic cohomology and non-algebraic manifolds, Compositio Math, Volume 74 (1990), pp. 299-325 | Numdam | MR | Zbl
[PS] Compactifications of : A survey, Proc. Symp. Pure Math, Volume 52 (1991) no. Part 2, pp. 455-466 | MR | Zbl
[RR] Holomorphic maps from to , Trans. Amer. Math. Soc., Volume 310 (1988), pp. 47-86 | MR | Zbl
Cited by Sources: