Connecting orbits of time dependent Lagrangian systems
Annales de l'Institut Fourier, Volume 52 (2002) no. 5, pp. 1533-1568.

We generalize to higher dimension results of Birkhoff and Mather on the existence of orbits wandering in regions of instability of twist maps. This generalization is strongly inspired by the one proposed by Mather. However, its advantage is that it contains most of the results of Birkhoff and Mather on twist maps.

On donne une généralisation à la dimension supérieure des résultats obtenus par Birkhoff et Mather sur l'existence d'orbites errant dans les zones d'instabilité des applications de l'anneau déviant la verticale. Notre généralisation s'inspire fortement de celle proposée par Mather. Elle présente cependant l'avantage de contenir effectivement l'essentiel des résultats de Birkhoff et Mather sur les difféomorphismes de l'anneau.

DOI: 10.5802/aif.1924
Classification: 37J45, 37J50, 53D99, 35F99
Keywords: connecting orbits, lagrangian systems, minimizing orbits
Mot clés : orbites hétéroclines, systèmes lagrangiens, orbites minimisantes
Bernard, Patrick 1

1 Université Joseph Fourier, Institut Fourier, BP 74, 38402 Saint-Martin d'Hères Cedex (France)
@article{AIF_2002__52_5_1533_0,
     author = {Bernard, Patrick},
     title = {Connecting orbits of time dependent {Lagrangian} systems},
     journal = {Annales de l'Institut Fourier},
     pages = {1533--1568},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {5},
     year = {2002},
     doi = {10.5802/aif.1924},
     mrnumber = {1935556},
     zbl = {1008.37035},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1924/}
}
TY  - JOUR
AU  - Bernard, Patrick
TI  - Connecting orbits of time dependent Lagrangian systems
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1533
EP  - 1568
VL  - 52
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1924/
DO  - 10.5802/aif.1924
LA  - en
ID  - AIF_2002__52_5_1533_0
ER  - 
%0 Journal Article
%A Bernard, Patrick
%T Connecting orbits of time dependent Lagrangian systems
%J Annales de l'Institut Fourier
%D 2002
%P 1533-1568
%V 52
%N 5
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1924/
%R 10.5802/aif.1924
%G en
%F AIF_2002__52_5_1533_0
Bernard, Patrick. Connecting orbits of time dependent Lagrangian systems. Annales de l'Institut Fourier, Volume 52 (2002) no. 5, pp. 1533-1568. doi : 10.5802/aif.1924. http://archive.numdam.org/articles/10.5802/aif.1924/

[1] J. Ball.; V. Mizel One dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rat. Mach. Anal, Volume 90 (1985), pp. 325-388 | DOI | MR | Zbl

[2] A. Fathi Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 267-270 | MR | Zbl

[3] A. Fathi Book (In preparation)

[4] A. Fathi; J. Mather Failure of convergence of the Lax-Oleinik semi-group in the time periodic case, Bull. Soc. Math. France, Volume 128 (2000), pp. 473-483 | Numdam | MR | Zbl

[5] R. Mañé ; G. Contreras; J. Delgado; R. Iturriaga Lagrangian flows: The dynamics of globally minimizing orbits ; Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Bras. Mat, Volume 28 (1997), p. 141-153 ; 155-196 | MR | Zbl

[6] D. Massart Aubry set and Mather's action functional, Preprint (2001)

[7] J. Mather Destruction of invariant circles, Erg. The. and Dyn. Syst, Volume 8 (1988), pp. 199-214 | DOI | MR | Zbl

[8] J. Mather Differentiability of the minimial average action as a function of the rotation number, Bol. Soc. Bras. Math, Volume 21 (1990), pp. 59-70 | DOI | MR | Zbl

[9] J. Mather Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc, Volume 4 (1991), pp. 207-263 | DOI | MR | Zbl

[10] J. Mather Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z, Volume 207 (1991), pp. 169-207 | DOI | MR | Zbl

[11] J. Mather Variational construction of connecting orbits, Ann. Inst. Fourier (1993) | Numdam | MR | Zbl

[12] J. Mather; G. Forni Action minimizing orbits in Hamiltonian systems, Transition to chaos in classical and quantum mechanics (Lect. Notes in Math.), Volume 1589 (1994) | Zbl

[13] J. Moser Monotone twist Mappings and the Calculs of Variations, Ergodic Theory and Dyn. Syst, Volume 6 (1986), pp. 401-413 | MR | Zbl

[14] J.-M. Roquejoffre Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations, J. Math. Pures Appl, Volume 80 (2001), pp. 85-104 | DOI | MR | Zbl

Cited by Sources: