Nous définissons une quantification
We define a
@article{AIF_2004__54_5_1565_0, author = {Tang, Xiang and Weinstein, Alan}, title = {Quantization and {Morita} equivalence for constant {Dirac} structures on tori}, journal = {Annales de l'Institut Fourier}, pages = {1565--1580}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {5}, year = {2004}, doi = {10.5802/aif.2059}, mrnumber = {2127858}, zbl = {1068.46044}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2059/} }
TY - JOUR AU - Tang, Xiang AU - Weinstein, Alan TI - Quantization and Morita equivalence for constant Dirac structures on tori JO - Annales de l'Institut Fourier PY - 2004 SP - 1565 EP - 1580 VL - 54 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2059/ DO - 10.5802/aif.2059 LA - en ID - AIF_2004__54_5_1565_0 ER -
%0 Journal Article %A Tang, Xiang %A Weinstein, Alan %T Quantization and Morita equivalence for constant Dirac structures on tori %J Annales de l'Institut Fourier %D 2004 %P 1565-1580 %V 54 %N 5 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2059/ %R 10.5802/aif.2059 %G en %F AIF_2004__54_5_1565_0
Tang, Xiang; Weinstein, Alan. Quantization and Morita equivalence for constant Dirac structures on tori. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1565-1580. doi : 10.5802/aif.2059. https://www.numdam.org/articles/10.5802/aif.2059/
[1] Quantization of foliations, Vol. 1, 2, World Scientific, 1992, p. 471-487 | Zbl
& ,[2] Noncommutative Geometry, Academic Press, 1994 | MR | Zbl
,[3] Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) | MR | Zbl
, & ,[4] Dirac manifolds, Trans. A.M.S 319 (1990) p. 631-661 | MR | Zbl
,
[5] On the K-theory of the
[6] Morita equivalence of smooth noncommutative tori, e-print, math.OA/0311502 | Zbl
& ,
[7] Kronecker foliation,
[8] Homological algebra of mirror symmetry., Vol. 1, 2, Birkhäuser, 1995, p. 120-139 | Zbl
,[9] Strong Morita equivalence of higher-dimensional noncommutative tori, e-print. To appear J. Reine Angew. Math., math.OA/0303123 | MR | Zbl
,[10] Noncommutative Geometry and String Duality, J. High Energy Phys., 1999
& ,
[11] Equivalence and isomorphism for groupoid
[12] Duality between
[13] Morita equivalence for
[14]
[15] Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math 40 (1988) p. 257-338 | MR | Zbl
,[16] Deformation quantization of Heisenberg manifolds, Commun. Math. Phys 122 (1989) p. 531-562 | MR | Zbl
,[17] Morita equivalence of multidimensional noncommutative tori, Int. J. Math 10 (1999) p. 289-299 | MR | Zbl
& ,[18] Morita equivalence and duality, Lett. Math. Phys 50 (1999) p. 309-321 | MR | Zbl
,[19] Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids, e-print, math.QA/0405378 | Zbl
,[20] Symplectic groupoids, geometric quantization, and irrational rotation algebras, MSRI Series, Springer, 1991, p. 281-290 | Zbl
,[21] Noncommutative Poisson algebras, Amer. J. Math 116 (1994) p. 101-125 | MR | Zbl
,- On the Algebraic Index for Riemannian Étale Groupoids, Letters in Mathematical Physics, Volume 90 (2009) no. 1-3, p. 287 | DOI:10.1007/s11005-009-0339-y
- Strong Morita equivalence of higher-dimensional noncommutative tori. II, Mathematische Annalen, Volume 341 (2008) no. 4, p. 825 | DOI:10.1007/s00208-008-0213-8
- Morita equivalence of smooth noncommutative tori, Acta Mathematica, Volume 199 (2007) no. 1, p. 1 | DOI:10.1007/s11511-007-0017-9
- Categories of holomorphic line bundles on higher dimensional noncommutative complex tori, Journal of Mathematical Physics, Volume 48 (2007) no. 5 | DOI:10.1063/1.2719564
- Poisson homotopy algebra: An idiosyncratic survey of homotopy algebraic topics related to Alan’s interests, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 583 | DOI:10.1007/0-8176-4419-9_20
Cité par 5 documents. Sources : Crossref