Nous proposons une approche d’une conjecture de Bierstone-Milman-Pawłucki sur le problème de Whitney concernant le prolongement des fonctions. Elle permet de montrer que la conjecture est vraie pour des ensembles fractals classiques. Nous obtenons ensuite un raffinement d’un théorème de Spallek sur la platitude.
We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.
Keywords: Whitney's problem, Spallek's theorem, smooth functions, higher order paratangent bundle, flatness, multi-dimensional Vandermonde matrix, self-similar set
Mot clés : Problème de Whitney, théorème de Spallek, fonction différentiable, fibré paratangent d'ordre supérieur, platitude, matrice de Vandermonde multi-dimensionnelle
@article{AIF_2004__54_6_1811_0, author = {Izumi, Shuzo}, title = {Restrictions of smooth functions to a closed subset}, journal = {Annales de l'Institut Fourier}, pages = {1811--1826}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2067}, mrnumber = {2134225}, zbl = {1083.26009}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2067/} }
TY - JOUR AU - Izumi, Shuzo TI - Restrictions of smooth functions to a closed subset JO - Annales de l'Institut Fourier PY - 2004 SP - 1811 EP - 1826 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2067/ DO - 10.5802/aif.2067 LA - en ID - AIF_2004__54_6_1811_0 ER -
%0 Journal Article %A Izumi, Shuzo %T Restrictions of smooth functions to a closed subset %J Annales de l'Institut Fourier %D 2004 %P 1811-1826 %V 54 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2067/ %R 10.5802/aif.2067 %G en %F AIF_2004__54_6_1811_0
Izumi, Shuzo. Restrictions of smooth functions to a closed subset. Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1811-1826. doi : 10.5802/aif.2067. http://archive.numdam.org/articles/10.5802/aif.2067/
[AS] Multivariate splines and polynomial interpolation, Russian Math. Surveys, Volume 48 (1993) no. 5, pp. 1-72 | MR | Zbl
[B] Introduction à la géométrie infinitésimale directe, Vuibert, Paris, 1932 | JFM | Zbl
[BMP1] Composite differentiable functions, Duke Math. J., Volume 83 (1996), pp. 607-620 | Zbl
[BMP2] Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math., Volume 151 (2003), pp. 329-352 | Zbl
[C] Convergence, Ann. Inst. Fourier, Volume 23 (1948), pp. 57-112 | Numdam | Zbl
[F] Techniques in fractal geometry, John-Wiley and Sons, 1997 | MR | Zbl
[G1] Études de quelques algèbres tayloriennes, J. Anal. Math., Volume 6 (1958), pp. 1-124 | MR | Zbl
[G2] L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II (Lecture Notes in Math.), Volume 209 (1971), pp. 1-33 | Zbl
[I] Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math., Volume 86 (2002), pp. 235-246 | MR | Zbl
[K] A natural interpolation of functions, J. Approx. Theory, Volume 29 (1980), pp. 278-293 | MR | Zbl
[MM] A formula for Kergin interpolation in , J. Approx. Theory, Volume 29 (1980), pp. 294-296 | MR | Zbl
[S] -Platte Funktionen auf semianalytischen Mengen, Math. Ann., Volume 227 (1977), pp. 277-286 | MR | Zbl
[W1] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 63-89 | JFM | MR | Zbl
[W2] Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc., Volume 36 (1934) no. 2, pp. 369-387 | MR | Zbl
[YHK] Mathematics of Fractals, Transl. Math. Monog., 167, Amer. Math. Soc., Providence, 1997 | MR | Zbl
Cité par Sources :