Nous proposons une approche d’une conjecture de Bierstone-Milman-Pawłucki sur le
problème de Whitney concernant le prolongement
We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on
Whitney’s problem on
Keywords: Whitney's problem, Spallek's theorem, smooth functions, higher order paratangent bundle, flatness, multi-dimensional Vandermonde matrix, self-similar set
Mot clés : Problème de Whitney, théorème de Spallek, fonction différentiable, fibré paratangent d'ordre supérieur, platitude, matrice de Vandermonde multi-dimensionnelle
@article{AIF_2004__54_6_1811_0, author = {Izumi, Shuzo}, title = {Restrictions of smooth functions to a closed subset}, journal = {Annales de l'Institut Fourier}, pages = {1811--1826}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2067}, mrnumber = {2134225}, zbl = {1083.26009}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2067/} }
TY - JOUR AU - Izumi, Shuzo TI - Restrictions of smooth functions to a closed subset JO - Annales de l'Institut Fourier PY - 2004 SP - 1811 EP - 1826 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2067/ DO - 10.5802/aif.2067 LA - en ID - AIF_2004__54_6_1811_0 ER -
%0 Journal Article %A Izumi, Shuzo %T Restrictions of smooth functions to a closed subset %J Annales de l'Institut Fourier %D 2004 %P 1811-1826 %V 54 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2067/ %R 10.5802/aif.2067 %G en %F AIF_2004__54_6_1811_0
Izumi, Shuzo. Restrictions of smooth functions to a closed subset. Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1811-1826. doi : 10.5802/aif.2067. https://www.numdam.org/articles/10.5802/aif.2067/
[AS] Multivariate splines and polynomial interpolation, Russian Math. Surveys, Volume 48 (1993) no. 5, pp. 1-72 | MR | Zbl
[B] Introduction à la géométrie infinitésimale directe, Vuibert, Paris, 1932 | JFM | Zbl
[BMP1] Composite differentiable functions, Duke Math. J., Volume 83 (1996), pp. 607-620 | Zbl
[BMP2] Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math., Volume 151 (2003), pp. 329-352 | Zbl
[C] Convergence, Ann. Inst. Fourier, Volume 23 (1948), pp. 57-112 | Numdam | Zbl
[F] Techniques in fractal geometry, John-Wiley and Sons, 1997 | MR | Zbl
[G1] Études de quelques algèbres tayloriennes, J. Anal. Math., Volume 6 (1958), pp. 1-124 | MR | Zbl
[G2] L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II (Lecture Notes in Math.), Volume 209 (1971), pp. 1-33 | Zbl
[I] Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math., Volume 86 (2002), pp. 235-246 | MR | Zbl
[K] A natural interpolation of
[MM] A formula for Kergin interpolation in
[S]
[W1] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 63-89 | JFM | MR | Zbl
[W2] Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc., Volume 36 (1934) no. 2, pp. 369-387 | MR | Zbl
[YHK] Mathematics of Fractals, Transl. Math. Monog., 167, Amer. Math. Soc., Providence, 1997 | MR | Zbl
Cité par Sources :