Holomorphic submersions from Stein manifolds
Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1913-1942.

We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

Nous établissons la classification homotopique des submersions holomorphes d'une variété de Stein sur une variété complexe satisfaisant une proprieté analytique introduite dans l'article. Le résultat est analogue au théorème de Gromov-Phillips sur les submersions lisses.

DOI: 10.5802/aif.2071
Classification: 32E10,  32E30,  32H02
Keywords: Stein manifolds, holomorphic submersions, Oka principle
Forstnerič, Franc 1

1 Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)
@article{AIF_2004__54_6_1913_0,
     author = {Forstneri\v{c}, Franc},
     title = {Holomorphic submersions from {Stein} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1913--1942},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2071},
     zbl = {1093.32003},
     mrnumber = {2134229},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2071/}
}
TY  - JOUR
AU  - Forstnerič, Franc
TI  - Holomorphic submersions from Stein manifolds
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 1913
EP  - 1942
VL  - 54
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2071/
UR  - https://zbmath.org/?q=an%3A1093.32003
UR  - https://www.ams.org/mathscinet-getitem?mr=2134229
UR  - https://doi.org/10.5802/aif.2071
DO  - 10.5802/aif.2071
LA  - en
ID  - AIF_2004__54_6_1913_0
ER  - 
%0 Journal Article
%A Forstnerič, Franc
%T Holomorphic submersions from Stein manifolds
%J Annales de l'Institut Fourier
%D 2004
%P 1913-1942
%V 54
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2071
%R 10.5802/aif.2071
%G en
%F AIF_2004__54_6_1913_0
Forstnerič, Franc. Holomorphic submersions from Stein manifolds. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1913-1942. doi : 10.5802/aif.2071. http://archive.numdam.org/articles/10.5802/aif.2071/

[A] R. Abraham Transversality in manifolds of mappings., Bull. Amer. Math. Soc., Volume 69 (1963), pp. 470-474 | MR | Zbl

[B] W. Barth; C. Peters; A. Van De Ven Compact Complex Surfaces, Springer, Berlin--Heidelberg--New Zork--Tokyo, 1984 | MR | Zbl

[De] J.-P Demailly Cohomology of q-convex spaces in top degrees, Math. Z., Volume 204 (1990), pp. 283-295 | MR | Zbl

[DG] F. Docquier; H. Grauert Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. (German), Math. Ann., Volume 140 (1960), pp. 94-123 | MR | Zbl

[E] Y. Eliashberg Topological characterization of Stein manifolds of dimension >2, Internat. J. Math, Volume 1 (1990), pp. 29-46 | MR | Zbl

[EM] Y. Eliashberg; N. Mishachev Introduction to the h-principle, Graduate Studies in Math, 48, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[F1] F. Forstnerič Noncritical holomorphic functions on Stein manifolds, Acta Math., Volume 191 (2003), pp. 143-189 | MR | Zbl

[F2] F. Forstnerič; J. Bland, K.-T. Kim and S. G. Krantz eds. The homotopy principle in complex analysis: A survey, Explorations in Complex and Riemannian Geometry: A Volume dedicated to Robert E. Greene (Contemporary Mathematics), Volume 332 (2003), pp. 73-99 | Zbl

[F3] F. Forstnerič The Oka principle for sections of subelliptic submersions, Math. Z., Volume 241 (2002), pp. 527-551 | MR | Zbl

[F4] F. Forstnerič Runge approximation on convex sets implies the Oka property (February 2004) (e-print, arXiv: math.CV/0402278)

[FK] F. Forstnerič; J. Kozak Strongly pseudoconvex handlebodies., J. Korean Math. Soc., Volume 40 (2003), pp. 727-746 | MR | Zbl

[FLØ] F. Forstnerič; E. Løw; N. Øvrelid Solving the d- and ¯-equations in thin tubes and applications to mappings., Michigan Math. J., Volume 49 (2001), pp. 369-416 | MR | Zbl

[Fo] O. Forster Plongements des variétés de Stein, Comment. Math. Helv, Volume 45 (1970), pp. 170-184 | MR | Zbl

[FP1] F. Forstnerič; J. Prezelj Oka's principle for holomorphic fiber bundles with sprays., Math. Ann., Volume 317 (2000), pp. 117-154 | MR | Zbl

[FP2] F. Forstnerič; J. Prezelj Oka's principle for holomorphic submersions with sprays., Math. Ann., Volume 322 (2002), pp. 633-666 | MR | Zbl

[FP3] F. Forstnerič; J. Prezelj Extending holomorphic sections from complex subvarieties., Math. Z., Volume 236 (2001), pp. 43-68 | MR | Zbl

[FR] F. Forstnerič; J.-P. Rosay Approximation of biholomorphic mappings by automorphisms of n ., Invent. Math., Volume 112 (1993), pp. 323-349 | MR | Zbl

[FR] F. Forstnerič; J.-P. Rosay Approximation of biholomorphic mappings by automorphisms of n , Invent. Math. (Erratum), Volume 118 (1994), pp. 573-574 | MR | Zbl

[G1] H. Grauert Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen., Math. Ann., Volume 133 (1957), pp. 139-159 | MR | Zbl

[G2] H. Grauert Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen., Math. Ann., Volume 133 (1957), pp. 450-472 | MR | Zbl

[G3] H. Grauert Analytische Faserungen über holomorph-vollständigen Räumen., Math. Ann., Volume 135 (1958), pp. 263-273 | MR | Zbl

[GN] R. C. Gunning; R. Narasimhan Immersion of open Riemann surfaces., Math. Ann., Volume 174 (1967), pp. 103-108 | MR | Zbl

[GR] R. C. Gunning; H. Rossi Analytic functions of several complex variables., Prentice--Hall, Englewood Cliffs, 1965 | MR | Zbl

[Gr1] M. Gromov Stable maps of foliations into manifolds., Izv. Akad. Nauk, S.S.S.R, Volume 33 (1969), pp. 707-734 | MR | Zbl

[Gr2] M. Gromov Convex integration of differential relations, I, Izv. Akad. Nauk SSSR Ser. Mat (Russian), Volume 37 (1973), pp. 329-343 | MR | Zbl

[Gr2] M. Gromov Convex integration of differential relations, I, Math. USSR--Izv. (English translation), Volume 7 (1973), pp. 329-343 | MR | Zbl

[Gr3] M. Gromov Partial Differential Relations., Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 9, Springer, Berlin--New York, 1986 | MR | Zbl

[Gr4] M. Gromov Oka's principle for holomorphic sections of elliptic bundles., J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897 | MR | Zbl

[HL1] G. M. Henkin; J. Leiterer Andreotti-Grauert Theory by Integral Formulas., Progress in Math., 74, Birkhäuser, Boston, 1988 | MR | Zbl

[HL2] G. M. Henkin; J. Leiterer The Oka-Grauert principle without induction over the basis dimension., Math. Ann., Volume 311 (1998), pp. 71-93 | MR | Zbl

[Hö1] L. Hörmander L 2 estimates and existence theorems for the ¯ operator., Acta Math., Volume 113 (1965), pp. 89-152 | MR | Zbl

[Hö2] L. Hörmander An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1990 | MR | Zbl

[HW] L. Hörmander; J. Wermer Uniform approximations on compact sets in n ., Math. Scand, Volume 23 (1968), pp. 5-21 | MR | Zbl

[O] K. Oka Sur les fonctions des plusieurs variables. III: Deuxième problème de Cousin., J. Sc. Hiroshima Univ., Volume 9 (1939), pp. 7-19 | JFM | Zbl

[P] A. Phillips Submersions of open manifolds., Topology, Volume 6 (1967), pp. 170-206 | MR | Zbl

[Ro] J.-P. Rosay A counterexample related to Hartog's phenomenon (a question by E.\ Chirka)., Michigan Math. J., Volume 45 (1998), pp. 529-535 | MR | Zbl

[RS] R. M. Range; Y. T. Siu k approximation by holomorphic functions and ¯ -closed forms on k submanifolds of a complex manifold., Math. Ann., Volume 210 (1974), pp. 105-122 | MR | Zbl

[S] J.-T. Siu Every Stein subvariety admits a Stein neighborhood., Invent. Math., Volume 38 (1976), pp. 89-100 | MR | Zbl

[W] J. Winkelman The Oka-principle for mappings between Riemann surfaces., Enseign. Math. (2), Volume 39 (1993), pp. 143-151 | MR | Zbl

Cited by Sources: