Weights in cohomology and the Eilenberg-Moore spectral sequence
Annales de l'Institut Fourier, Volume 55 (2005) no. 2, pp. 673-691.

We show that in the category of complex algebraic varieties, the Eilenberg–Moore spectral sequence can be endowed with a weight filtration. This implies that it degenerates if all spaces involved have pure cohomology. As application, we compute the rational cohomology of an algebraic G-variety X (G being a connected algebraic group) in terms of its equivariant cohomology provided that H G * (X) is pure. This is the case, for example, if X is smooth and has only finitely many orbits. We work in the category of mixed sheaves; therefore our results apply equally to (equivariant) intersection homology.

Nous montrons que dans la catégorie des variétés algébriques complexes la suite spectrale d’Eilenberg-Moore admet une filtration par le poids, ce qui implique sa dégénérescence si la cohomologie de tous les espaces en jeu est pure. Nous illustrons notre résultat par le calcul de la cohomologie rationnelle d’une G-variété algébrique X (G étant un group algébrique connexe), à partir de sa cohomologie équivariante, pourvu que H G * (X) soit pur. Cette dernière condition est satisfaite, par exemple, si X est lisse et n’a qu’un nombre fini d’orbites. Nous travaillons dans la catégorie des faisceaux mixtes ; nos résultats restent donc également valables pour l’homologie d’intersection.

DOI: 10.5802/aif.2109
Classification: 32S35, 14L30, 14F43, 55N33
Keywords: Eilenberg-Moore spectral sequence, weight filtration, equivariant cohomology, intersection cohomology, complex algebraic $G$-varieties
Mot clés : suite spectrale d'Eilenberg-Moore, filtration de poids, cohomologie équivariante, cohomologie d'intersection, variétés algébriques complexes
Franz, Matthias 1; Weber, Andrzej 

1 Université de Genève, section de Mathématiques, CP 240, 1211 Genève 24 (Switzerland), Uniwersytet Warszawski, Instytut Matematyki, ul. Banacha 2, 02-097 Warszawa (POLAND)
@article{AIF_2005__55_2_673_0,
     author = {Franz, Matthias and Weber, Andrzej},
     title = {Weights in cohomology and the {Eilenberg-Moore} spectral sequence},
     journal = {Annales de l'Institut Fourier},
     pages = {673--691},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {2},
     year = {2005},
     doi = {10.5802/aif.2109},
     mrnumber = {2147902},
     zbl = {02171520},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2109/}
}
TY  - JOUR
AU  - Franz, Matthias
AU  - Weber, Andrzej
TI  - Weights in cohomology and the Eilenberg-Moore spectral sequence
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 673
EP  - 691
VL  - 55
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2109/
DO  - 10.5802/aif.2109
LA  - en
ID  - AIF_2005__55_2_673_0
ER  - 
%0 Journal Article
%A Franz, Matthias
%A Weber, Andrzej
%T Weights in cohomology and the Eilenberg-Moore spectral sequence
%J Annales de l'Institut Fourier
%D 2005
%P 673-691
%V 55
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2109/
%R 10.5802/aif.2109
%G en
%F AIF_2005__55_2_673_0
Franz, Matthias; Weber, Andrzej. Weights in cohomology and the Eilenberg-Moore spectral sequence. Annales de l'Institut Fourier, Volume 55 (2005) no. 2, pp. 673-691. doi : 10.5802/aif.2109. http://archive.numdam.org/articles/10.5802/aif.2109/

[1] A. Alekseev; E. Meinrenken Equivariant cohomology and the Maurer-Cartan equation (Preprint math.DG/0406350)

[2] A. Beilinson; J. Bernstein; P. Deligne Faisceaux Pervers (Astérisque), Volume 100 (1983), pp. 5-171 | Zbl

[3] J. Bernstein; V. Lunts Equivariant sheaves and functors, Lecture Notes in Mathematics, 1578, Springer-Verlag, Berlin, 1994 | MR | Zbl

[4] E. Bifet; C. De; Concini; C. Procesi Cohomology of Regular Embeddings, Adv. Math., Volume 82 (1990) no. 1, pp. 1-34 | DOI | MR | Zbl

[5] A. Borel Sur la cohomologie des espaces fibrés et des espaces homogènes de groupes de Lie compacts, Ann. Math., Volume 57 (1953) no. 1, pp. 115-207 | DOI | MR | Zbl

[6] M. Brion Variétés sphériques (, http://www-fourier.ujf-grenoble.fr/~brion/)

[7] M. Brion; R. Joshua Vanishing of odd intersection cohomology II, Math. Ann., Volume 321 (2001), pp. 399-437 | DOI | MR | Zbl

[8] M. Brion; R. Joshua Intersection cohomology of reductive varieties (2003) (arXiv preprint math.AG/0310107)

[10] P. Deligne Théorie de Hodge III, Publ. Math. I.H.E.S., Volume 44 (1974), pp. 5-77 | Numdam | MR | Zbl

[11] J. Denef; F. Loeser Weights of exponential sums, intersection cohomology and Newton polyhedra, Inv. Math., Volume 109 (1991), pp. 275-294 | MR | Zbl

[12] D. Edidin; W. Graham Equivariant intersection theory, Invent. Math., Volume 131 (1998) no. 3, pp. 595-634 | DOI | MR | Zbl

[13] S. Eilenberg; J. C. Moore Homology and fibrations I. Coalgebras cotensor product and its derived functors, Comment. Math. Helv., Volume 40 (1966), pp. 199-236 | MR | Zbl

[14] M. Franz On the integral cohomology of smooth toric varieties ( Preprint math.AT/0308253)

[15] M. Goresky; R. Mac; Pherson Intersection homology II, Invent. Math., Volume 72 (1983), pp. 77-130 | DOI | MR | Zbl

[16] M. Goresky; R. Kottwitz; R. Mac; Pherson Equivariant cohomology, Koszul duality and the localization theorem, Inv. Math., Volume 131 (1998), pp. 25-83 | MR | Zbl

[17] R. M. Hain The de Rham homotopy theory of complex algebraic varieties. I K-Theory, Volume 1 (1987) no. 3, pp. 271-324 | MR | Zbl

[18] R. M. Hain; S. Zucker Unipotent variations of mixed Hodge structure, Invent. Math., Volume 88 (1987) no. 1, pp. 83-124 | DOI | MR | Zbl

[19] J. Huebschmann Relative homological algebra homological perturbations, equivariant de Rham theory, and Koszul duality (2003) (arXiv preprint math.DG/0401161)

[20] T. Maszczyk; A. Weber Koszul duality for modules over Lie algebras, Duke Math. J., Volume 112 (2002) no. 3, pp. 511-520 | DOI | MR | Zbl

[21] F. Morel; V. Voevodsky A 1 -homotopy theory of schemes, Publ. Math. I.H.E.S., Volume 90 (2001), pp. 45-143 | Numdam | MR | Zbl

[22] M. Saito Hodge structure via filtered 𝒟-modules (Astérisque), Volume 130 (1985), pp. 342-351 | Numdam | Zbl

[23] M. Saito Introduction to mixed Hodge modules (Astérisque), Volume 179-180 (1989), pp. 145-162 | Numdam | Zbl

[24] M. Saito Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J., Volume 42 (1990), pp. 127-148 | DOI | MR | Zbl

[25] L. Smith On the construction of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 873-878 | DOI | MR | Zbl

[26] L. Smith Lectures on the Eilenberg-Moore spectral sequence, LNM, 134, Springer, 1970 | MR | Zbl

[27] J. Stasheff; S. Halperin Differential algebra in its own rite, Proc. Adv. Study Inst. Alg. Top. (Aarhus 1970), Vol. III (Various Publ. Ser.), Volume 13 (1970), pp. 567-577 | Zbl

[28] B. Totaro The Chow ring of a classifying space. Algebraic K-theory, Proceedings of an AMS-IMS-SIAM summer research conference, Seattle (WA), USA, July 13-24, 1997. (American Mathematical Society. Proc. Symp. Pure Math.), Volume 67 (1999), pp. 249-281 | Zbl

[29] A. Weber Formality of equivariant intersection cohomology of algebraic varieties, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 2633-2638 | DOI | MR | Zbl

[30] A. Weber Weights in the cohomology of toric varieties, Central European Journal of Mathematics, Volume 2 (2004) no. 3, pp. 478-492 | DOI | MR | Zbl

Cited by Sources: