We introduce a geometry on the cone of positive closed currents of bidegree and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.
Nous introduisons une géométrie sur le cône des courants positifs fermés de bidegré et nous l’utilisons pour définir l’intersection de tels courants. Nous construisons et étudions aussi les courants de Green et la mesure d’équilibre pour les applications d’allure horizontale, en toute dimension. Les courants de Green vérifient certaines propriétés d’extrémalité. La mesure d’équilibre est invariante, mélangeante et d’entropie maximale. Elle est égale à l’intersection des courants de Green associés à l’application et à son inverse.
Keywords: Structural discs of currents, Green current, equilibrium measure, mixing, entropy.
Mot clés : disque structurel de courants, courant de Green, mesure d’équilibre, mélange, entropie
@article{AIF_2006__56_2_423_0, author = {Dinh, Tien-Cuong and Sibony, Nessim}, title = {Geometry of currents, intersection theory and dynamics of horizontal-like maps}, journal = {Annales de l'Institut Fourier}, pages = {423--457}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {2}, year = {2006}, doi = {10.5802/aif.2188}, zbl = {1089.37036}, mrnumber = {2226022}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2188/} }
TY - JOUR AU - Dinh, Tien-Cuong AU - Sibony, Nessim TI - Geometry of currents, intersection theory and dynamics of horizontal-like maps JO - Annales de l'Institut Fourier PY - 2006 SP - 423 EP - 457 VL - 56 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2188/ DO - 10.5802/aif.2188 LA - en ID - AIF_2006__56_2_423_0 ER -
%0 Journal Article %A Dinh, Tien-Cuong %A Sibony, Nessim %T Geometry of currents, intersection theory and dynamics of horizontal-like maps %J Annales de l'Institut Fourier %D 2006 %P 423-457 %V 56 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2188/ %R 10.5802/aif.2188 %G en %F AIF_2006__56_2_423_0
Dinh, Tien-Cuong; Sibony, Nessim. Geometry of currents, intersection theory and dynamics of horizontal-like maps. Annales de l'Institut Fourier, Volume 56 (2006) no. 2, pp. 423-457. doi : 10.5802/aif.2188. http://archive.numdam.org/articles/10.5802/aif.2188/
[1] Polynomial diffeomorphisms of , V: The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993) no. 1, pp. 77-125 | DOI | Zbl
[2] Polynomial diffeomorphisms of , III: Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann., Volume 294 (1992), pp. 395-420 | DOI | Zbl
[3] Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry, Plemum Press (1993), pp. 115-193 | Zbl
[4] Decay of correlations for Hénon maps (to appear)
[5] On the dynamics near infinity of some polynomial mappings in , Math. Ann., Volume 333 (2005) no. 4, pp. 703-739 | DOI | Zbl
[6] Dynamique des applications d’allure polynomiale, J. Math. Pures Appl., Volume 82 (2003), pp. 367-423 | DOI | Zbl
[7] Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup., Volume 37 (2004), pp. 959-971 | Numdam | Zbl
[8] Dynamics of regular birational maps in , J. Funct. Anal., Volume 222 (2005) no. 1, pp. 202-216 | DOI | Zbl
[9] Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 291-312 | DOI | Zbl
[10] Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math., Volume 161 (2005), pp. 1637-1644 | DOI | Zbl
[11] Hénon-like mappings in , Amer. J. Math., Volume 126 (2004), pp. 439-472 | DOI | Zbl
[12] Polynomial convexity, rational convexity, and currents, Duke Math. J., Volume 79 (1995) no. 2, pp. 487-513 | DOI | Zbl
[13] Geometric Measure Theory, Springer Verlag, New York, 1969 | Zbl
[14] Complex Hénon mappings in and Fatou-Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380 | DOI | Zbl
[15] Oka’s inequality for currents and applications, Math. Ann., Volume 301 (1995), pp. 399-419 | DOI | Zbl
[16] On the entropy of holomorphic maps, Enseignement Math., Volume 49 (2003), pp. 217-235 Manuscript (1977) | Zbl
[17] Extending analytic objects, Comm. Pure Appl. Math., Volume 28 (1975), pp. 701-727 | DOI | Zbl
[18] A characterization of holomorphic chains, Ann. of Math. (2), Volume 99 (1974), pp. 553-587 | DOI | Zbl
[19] The analysis of Linear partial differential operators I, Springer-Verlag, 1983 | Zbl
[20] Introduction to the modern theory of dynamical systems, Encycl. of Math. and its Appl., 54, Cambridge Univ. Press., 1995 | Zbl
[21] Fonctions plurisousharmoniques et formes différentielles positives, Dunod, Paris, 1968 | Zbl
[22] Dynamique des applications rationnelles de , Panoramas et Synthèses, Volume 8 (1999), pp. 97-185 | Zbl
[23] The entropy of polynomial diffeomorphisms of , Ergodic Theory & Dynamical Systems, Volume 10 (1990), pp. 823-827 | Zbl
[24] An introduction to ergodic theory, Springer, Berlin-Heidelberg-New York, 1982 | Zbl
[25] Volume growth and entropy, Israel J. Math., Volume 57 (1987), pp. 285-300 | DOI | Zbl
Cited by Sources: