Substitution dynamical systems on infinite alphabets
[Substitutions sur un alphabet infini]
Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2315-2343.

Nous étudions quelques exemples de substitutions sur des alphabets infinis, et jetons les bases d’une théorie générale des systèmes dynamiques associés. En particulier la substitution “de l’ivrogne” définit un système préservant une mesure infinie ergodique, d’entropie de Krengel nulle, tandis que les substitutions de longueur constante dont la matrice est positive récurrente correspondent à des systèmes préservant des mesures finies ergodiques.

We give a few examples of substitutions on infinite alphabets, and the beginning of a general theory of the associated dynamical systems. In particular, the “drunken man” substitution can be associated to an ergodic infinite measure preserving system, of Krengel entropy zero, while substitutions of constant length with a positive recurrent infinite matrix correspond to ergodic finite measure preserving systems.

DOI : https://doi.org/10.5802/aif.2242
Classification : 37A05,  37A40,  37B10
Mots clés : Substitutions, systèmes dynamiques
@article{AIF_2006__56_7_2315_0,
     author = {Ferenczi, S\'ebastien},
     title = {Substitution dynamical systems on infinite alphabets},
     journal = {Annales de l'Institut Fourier},
     pages = {2315--2343},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {7},
     year = {2006},
     doi = {10.5802/aif.2242},
     mrnumber = {2290783},
     zbl = {1147.37007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2242/}
}
Ferenczi, Sébastien. Substitution dynamical systems on infinite alphabets. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2315-2343. doi : 10.5802/aif.2242. http://archive.numdam.org/articles/10.5802/aif.2242/

[1] CASSAIGNE, J. Complexité et facteurs spéciaux. Complexity and special factor, Bull. Belg. Math. Soc. Simon Stevin, 4 (Journées Montoises (Mons, 1994)), Volume 4 (1997) no. 1, pp. 67-88 (french) | MR 1440670 | Zbl 0921.68065

[2] DURAND, F. A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 | Article | MR 1489074 | Zbl 0895.68087

[3] FERENCZI, S. Complexity of sequences and dynamical systems, Discrete Math., Volume 206 (1999), pp. 145-154 | Article | MR 1665394 | Zbl 0936.37008

[4] HOPF, E. Ergodentheorie, Springer-Verlag, 1937 | Zbl 0185.29001

[5] KITCHENS, B. Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, Universitext., Springer-Verlag, 1998 | MR 1484730 | Zbl 0892.58020

[6] KRENGEL, U. Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 7 (1967), pp. 161-181 | Article | MR 218522 | Zbl 0183.19303

[7] LE GONIDEC, M. Sur la complexité de mots infinis engandrés par des q -automates dénombrables To appear in Ann. Inst. Fourier (present issue) | Numdam

[8] MAUDUIT, C. Propriétés arithmétiques des substitutions et automates infinis To appear in Ann. Inst. Fourier (present issue) | Numdam | MR 1476736

[9] MOSSÉ, B. Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci., Volume 99 (1992) no. 2, pp. 327-334 (french) | Article | MR 1168468 | Zbl 0763.68049

[10] PYTHEAS FOGG, N. The universal counter-example (in preparation)

[11] PYTHEAS FOGG, N. Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., Volume 1794, Springer-Verlag, 2002 | MR 1970385 | Zbl 1014.11015

[12] QUEFFÉLEC, M. Substitution dynamical systems - Spectral analysis, Lecture Notes in Math., Volume 1294, Springer-Verlag, 1987 | MR 924156 | Zbl 0642.28013