We show that for each genus there are only finitely many algebraically primitive Teichmüller curves , such that (i) lies in the hyperelliptic locus and (ii) is generated by an abelian differential with two zeros of order . We prove moreover that for these Teichmüller curves the trace field of the affine group is not only totally real but cyclotomic.
Pour chaque genre fixé, on montre qu’il n’y a qu’un nombre fini de courbes de Teichmüller algébriquement primitives telles que (i) appartient au lieu hyperelliptique et (ii) est engendrée par une différentielle abélienne avec deux zéros d’ordre . On montre en outre que pour ces courbes de Teichmüller le corps de traces du groupe affine n’est pas seulement totalement réel mais cyclotomique.
Keywords: Teichmüller curves, cyclotomic field, Neron model
Mot clés : courbes de Teichmüller, corps cyclotomiques, modèle de Neron
@article{AIF_2008__58_1_63_0, author = {M\"oller, Martin}, title = {Finiteness results for {Teichm\"uller} curves}, journal = {Annales de l'Institut Fourier}, pages = {63--83}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {1}, year = {2008}, doi = {10.5802/aif.2344}, zbl = {1140.14010}, mrnumber = {2401216}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2344/} }
TY - JOUR AU - Möller, Martin TI - Finiteness results for Teichmüller curves JO - Annales de l'Institut Fourier PY - 2008 SP - 63 EP - 83 VL - 58 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2344/ DO - 10.5802/aif.2344 LA - en ID - AIF_2008__58_1_63_0 ER -
Möller, Martin. Finiteness results for Teichmüller curves. Annales de l'Institut Fourier, Volume 58 (2008) no. 1, pp. 63-83. doi : 10.5802/aif.2344. http://archive.numdam.org/articles/10.5802/aif.2344/
[1] Néron Models, Ergebnisse der Math. 3, Volume 21, Springer-Verlag, 1990 | MR | Zbl
[2] Un théorème de finitude pour la monodromie, Progress in Math., Volume 67, Birkhäuser, 1987, pp. 1-19 | MR | Zbl
[3] Lectures on Hilbert Modular varieties and Modular forms, CRM Monogr. Series, Volume 14, Amer. Math. Soc., 2002 | MR | Zbl
[4] Affine mappings of translation surfaces, Duke Math. J., Volume 103 (2000), pp. 191-212 | DOI | MR | Zbl
[5] Veech groups without parabolic elements, Duke Math. J., Volume 133 (2006), pp. 335-346 | DOI | MR | Zbl
[6] Billiards on rational-angled triangles, Comm. Math. Helv., Volume 75 (2000), pp. 65-108 | DOI | MR | Zbl
[7] Connected Components of the Moduli Space of Abelian Differentials with Prescribed Singularities, Invent. Math., Volume 153 (2003), pp. 631-678 | DOI | MR | Zbl
[8] On linear relations between roots of unity, Mathematika, Volume 12 (1965), pp. 107-117 | DOI | MR | Zbl
[9] On a class of geodesics in Teichmüller space, Annals of Math., Volume 102 (1975), pp. 205-221 | DOI | MR | Zbl
[10] Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | MR | Zbl
[11] Billiards and Teichmüller curves on Hilbert modular sufaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 | DOI | MR | Zbl
[12] Teichmüller curves in genus two: Discriminant and spin, Math. Ann., Volume 333 (2005), pp. 87-130 | DOI | MR | Zbl
[13] Teichmüller curves in genus two: The decagon and beyond, J. reine angew. Math., Volume 582 (2005), pp. 173-200 | DOI | MR | Zbl
[14] Prym varieties and Teichmüller curves, Duke Math. J., Volume 133 (2006), pp. 569-590 | DOI | MR | Zbl
[15] Teichmüller curves in genus two: Torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006), pp. 651-672 | DOI | MR | Zbl
[16] Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math., Volume 165 (2006), pp. 633-649 | DOI | MR | Zbl
[17] Variations of Hodge structures of Teichmüller curves, J. Amer. Math. Soc., Volume 19 (2006), pp. 327-344 | DOI | MR | Zbl
[18] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989), pp. 533-583 | DOI | MR | Zbl
[19] Plane structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys, Volume 51 (1996), pp. 779-817 | DOI | MR | Zbl
[20] Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergod. Th. Dyn. Systems, Volume 18 (1998), pp. 1019-1042 | DOI | MR | Zbl
Cited by Sources: