Soit une involution de l’algèbre de Lie semi-simple de dimension finie et la décomposition de Cartan associée. La variété commutante nilpotente de l’algèbre de Lie symétrique est formée des paires d’éléments nilpotents de tels que . Il est conjecturé que cette variété est équidimensionnelle et que ses composantes irréductibles sont indexées par les orbites d’éléments -distingués. Cette conjecture a été démontrée par A. Premet dans le cas avec . Dans ce travail, nous la prouvons dans un grand nombre d’autres cas.
Let be an involution of the finite dimensional semisimple Lie algebra and be the associated Cartan decomposition. The nilpotent commuting variety of consists in pairs of nilpotent elements of such that . It is conjectured that this variety is equidimensional and that its irreducible components are indexed by the orbits of distinguished elements. This conjecture was established by A. Premet in the case where . In this work we prove the conjecture in a significant number of other cases.
Classification : 17B20, 14L30, 17B20
Mots clés : algèbre de Lie semi-simple, paire symétrique, variété commutante, orbite nilpotente
@article{AIF_2009__59_1_37_0, author = {Bulois, Micha\"el}, title = {Composantes irr\'eductibles de la vari\'et\'e commutante nilpotente d{\textquoteright}une alg\`ebre {de~Lie} sym\'etrique semi-simple}, journal = {Annales de l'Institut Fourier}, pages = {37--80}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {1}, year = {2009}, doi = {10.5802/aif.2426}, mrnumber = {2514861}, zbl = {1189.17008}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.2426/} }
TY - JOUR AU - Bulois, Michaël TI - Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple JO - Annales de l'Institut Fourier PY - 2009 DA - 2009/// SP - 37 EP - 80 VL - 59 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2426/ UR - https://www.ams.org/mathscinet-getitem?mr=2514861 UR - https://zbmath.org/?q=an%3A1189.17008 UR - https://doi.org/10.5802/aif.2426 DO - 10.5802/aif.2426 LA - fr ID - AIF_2009__59_1_37_0 ER -
Bulois, Michaël. Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple. Annales de l'Institut Fourier, Tome 59 (2009) no. 1, pp. 37-80. doi : 10.5802/aif.2426. http://archive.numdam.org/articles/10.5802/aif.2426/
[1] The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups, Volume 6 (2001), pp. 3-8 | Article | MR 1825165 | Zbl 0980.15012
[2] Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris, 1968 | MR 240238 | Zbl 0483.22001
[3] Classification of nilpotent elements in simple exceptional real algebras of inner type and description of their centralizers, J. Algebra, Volume 112 (1988), pp. 503-524 | Article | MR 926619 | Zbl 0639.17005
[4] Classification of nilpotent elements in simple real lie algebras and and description of their centralizers, J. Algebra, Volume 116 (1988), pp. 196-207 | Article | MR 944155 | Zbl 0653.17004
[5] Explicit Cayley triples in real forms of , and , Pacific J. Math., Volume 184 (1998), pp. 231-255 | Article | Zbl 1040.17004
[6] Explicit Cayley triples in real forms of , Pacific J. of Math., Volume 194 (2000), pp. 57-82 | Article | MR 1756626 | Zbl 1013.22003
[7] The closure diagram for nilpotent orbits of the split real form of , Represent. Theory, Volume 5 (2001), pp. 284-316 | Article | MR 1857083 | Zbl 1050.17007
[8] The closure diagrams for nilpotent orbits of real forms of , J. Lie Theory, Volume 11 (2001), pp. 381-413 | MR 1851797 | Zbl 1049.17006
[9] The closure diagram for nilpotent orbits of the split real form of , Centr. Europ. J. Math., Volume 4 (2003), pp. 573-643 | Article | MR 2040654 | Zbl 1050.17006
[10] The centralisers of nilpotent elements in semisimple Lie algebras, Trudy Tbiliss. Inst. Mat. Nats. Nauk Gruzin., Volume 46 (1975), pp. 109-132 (In Russian)
[11] An algebraic group approach to compact symetric spaces, 1997 (http ://www.math.rutgers.edu/pub/goodman/symspace.pdf)
[12] Differential geometry, Lie groups, and symmetric spaces, Pure and applied mathematics, Academic press, 1978 | MR 514561 | Zbl 0451.53038
[13] Prehomogeneous spaces associated with nilpotent orbits, 2005 (http://www.math.umb.edu/~anoel/publications/tables)
[14] Nilpotent orbits in representation theory, Lie Theory (Progr. Math.), Volume 228, Birkhäuser, 2004, pp. 1-211 | MR 2042689
[15] Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo, Volume 34 (1987), pp. 573-597 | MR 927602 | Zbl 0651.20046
[16] The component groups of nilpotents in exceptionnal simple real Lie algebras, Comm. Algebra, Volume 20 (1992), pp. 219-284 | Article | MR 1145333 | Zbl 0758.17006
[17] Orbits and representations associated with symmetric spaces, Amer. J. Math., Volume 93 (1971), pp. 753-809 | Article | MR 311837 | Zbl 0224.22013
[18] The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tôhoku Math. J., Volume 38 (1986), pp. 441-468 | Article | MR 854462 | Zbl 0654.22004
[19] The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tôhoku Math. J., Volume 43 (1991), pp. 161-211 | Article | MR 1104427 | Zbl 0738.22007
[20] The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., Volume 94 (1994), pp. 181-199 | Numdam | MR 1302315 | Zbl 0834.17003
[21] On the conormal bundle of a -stable subvariety, Manuscripta Math., Volume 99 (1999), pp. 185-202 | Article | MR 1697213 | Zbl 0961.14030
[22] On the irreducibility of commuting varieties associated with involutions of simple Lie algebras, Func. Anal. Appl., Volume 38 (2004), pp. 38-44 | Article | MR 2061790 | Zbl 1125.17001
[23] Two results on centralisers of nilpotent elements, J. Pure Appl. Algebra, Volume 212 (2008), pp. 774-779 | Article | MR 2363491 | Zbl 1137.17017
[24] Symmetric pairs and associated commuting varieties, Math. Proc., Volume 143 (2007), pp. 307-321 | MR 2364652 | Zbl 1126.17010
[25] Self-dual projective algebraic varieties associated with symmetric spaces, Algebraic transformation groups and algebraic varieties (Enc. Math. Sci.), Volume 132 (2004), pp. 131-167 | MR 2090673 | Zbl 1093.14072
[26] Nilpotent commuting varieties of reductive Lie algebras, Invent. Math., Volume 154 (2003), pp. 653-683 | Article | MR 2018787 | Zbl 1068.17006
[27] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Volume 38 (1979), pp. 311-327 | Numdam | MR 535074 | Zbl 0409.17006
[28] Sur l’irréductibilité de la variété commutante d’une paire symétrique réductive de rang 1, Bull. Sci. Math., Volume 126 (2002), pp. 143-150 | Article | MR 1906241 | Zbl 1017.17010
[29] On the irreducibility of the commuting variety of the symmetric pair , J. Lie Theory, Volume 16 (2006), pp. 57-65 | MR 2196413 | Zbl 1128.17009
[30] The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS Kyoto Univ., Volume 20 (1984), pp. 155-212 | Article | MR 736100 | Zbl 0556.14022
[31] Conjugacy classes, Seminar on algebraic groups and related finite groups (Lecture Notes in Math.), Volume 131, Springer, 1970, pp. 167-266 | MR 268192 | Zbl 0249.20024
[32] Lie algebras and algebraic groups, Springer Monographs in Mathematics, Springer, 2005 | MR 2146652 | Zbl 1068.17001
[33] Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Selecta Math. Sovietica, Volume 6 (1987), pp. 15-35 | Zbl 0612.17010
Cité par Sources :