A Freĭman-type theorem for locally compact abelian groups
Annales de l'Institut Fourier, Volume 59 (2009) no. 4, pp. 1321-1335.

Suppose that G is a locally compact abelian group with a Haar measure μ. The δ-ball B δ of a continuous translation invariant pseudo-metric is called d-dimensional if μ(B 2δ )2 d μ(B δ ) for all δ (0,δ]. We show that if A is a compact symmetric neighborhood of the identity with μ(nA)n d μ(A) for all ndlogd, then A is contained in an O(dlog 3 d)-dimensional ball, B, of positive radius in some continuous translation invariant pseudo-metric and μ(B)exp(O(dlogd))μ(A).

Soit G un groupe abélien localement compact muni d’une mesure de Haar μ. La δ-boule B δ pour une pseudo-métrique continue et invariante par translation sera dite de dimension d si μ(B 2δ )2 d μ(B δ ) pour tout δ (0,δ]. Nous montrons que si A est un voisinage compact symétrique de l’identité tel que μ(nA)n d μ(A) pour tout ndlogd, alors A est contenu dans une boule B de dimension O(dlog 3 d) et de rayon strictement positif pour une pseudo-métrique continue et invariante par translation  ; de plus μ(B)exp(O(dlogd))μ(A).

DOI: 10.5802/aif.2465
Classification: 43A25, 11B25
Keywords: Freĭman’s theorem, Fourier transform, balls in pseudo- metrics, polynomial growth
Mot clés : théorème de Freĭman, transformée de Fourier, boules dans des pseudo-métriques, croissance polynomiale
Sanders, Tom 1

1 University of Cambridge Department of Pure Mathematics and Mathematical Statistics Wilberforce Road Cambridge CB3 0WA (England)
@article{AIF_2009__59_4_1321_0,
     author = {Sanders, Tom},
     title = {A {Fre\u{i}man-type} theorem for locally compact abelian groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1321--1335},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {4},
     year = {2009},
     doi = {10.5802/aif.2465},
     zbl = {1179.43002},
     mrnumber = {2566962},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2465/}
}
TY  - JOUR
AU  - Sanders, Tom
TI  - A Freĭman-type theorem for locally compact abelian groups
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1321
EP  - 1335
VL  - 59
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2465/
DO  - 10.5802/aif.2465
LA  - en
ID  - AIF_2009__59_4_1321_0
ER  - 
%0 Journal Article
%A Sanders, Tom
%T A Freĭman-type theorem for locally compact abelian groups
%J Annales de l'Institut Fourier
%D 2009
%P 1321-1335
%V 59
%N 4
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2465/
%R 10.5802/aif.2465
%G en
%F AIF_2009__59_4_1321_0
Sanders, Tom. A Freĭman-type theorem for locally compact abelian groups. Annales de l'Institut Fourier, Volume 59 (2009) no. 4, pp. 1321-1335. doi : 10.5802/aif.2465. http://archive.numdam.org/articles/10.5802/aif.2465/

[1] Birkhoff, G. A note on topological groups, Compositio Math., Volume 3 (1936), pp. 427-430 | EuDML | JFM | Numdam | MR | Zbl

[2] Bourgain, J. On triples in arithmetic progression, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 968-984 | DOI | MR | Zbl

[3] Chang, M.-C. A polynomial bound in Freĭman’s theorem, Duke Math. J., Volume 113 (2002) no. 3, pp. 399-419 | DOI | MR | Zbl

[4] Green, B. J. A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal., Volume 15 (2005) no. 2, pp. 340-376 | DOI | MR | Zbl

[5] Green, B. J.; Ruzsa, I. Z. Freĭman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc. (2), Volume 75 (2007) no. 1, pp. 163-175 | DOI | MR | Zbl

[6] Green, B. J.; Sanders, Tom A quantitative version of the idempotent theorem in harmonic analysis, Ann. of Math. (2), Volume 168 (2008) no. 3, pp. 1025-1054 | DOI | MR | Zbl

[7] Ruzsa, I. Z. An analog of Freiman’s theorem in groups, Astérisque (1999) no. 258, pp. xv, 323-326 (Structure theory of set addition) | MR | Zbl

[8] Sanders, T. Three term arithmetic progressions and sumsets (2007) (To appear) | Zbl

[9] Schoen, Tomasz The cardinality of restricted sumsets, J. Number Theory, Volume 96 (2002) no. 1, pp. 48-54 | MR | Zbl

[10] Shkredov, I. D. On a generalization of Szemerédi’s theorem, Proc. London Math. Soc. (3), Volume 93 (2006) no. 3, pp. 723-760 | DOI | MR

[11] Shkredov, I. D. On sets with small doubling (2007) (arXiv:math/0703309v1) | MR

[12] Tao, T. C.; Vu, V. H. Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006 | MR | Zbl

Cited by Sources: