For a smooth and proper curve over the fraction field of a discrete valuation ring , we explain (under very mild hypotheses) how to equip the de Rham cohomology with a canonical integral structure: i.e., an -lattice which is functorial in finite (generically étale) -morphisms of and which is preserved by the cup-product auto-duality on . Our construction of this lattice uses a certain class of normal proper models of and relative dualizing sheaves. We show that our lattice naturally contains the lattice furnished by the (truncated) de Rham complex of a regular proper -model of and that the index for this inclusion of lattices is a numerical invariant of (we call it the de Rham conductor). Using work of Bloch and of Liu-Saito, we prove that the de Rham conductor of is bounded above by the Artin conductor, and bounded below by the efficient conductor. We then study how the position of our canonical lattice inside the de Rham cohomology of is affected by finite extension of scalars.
Soit un anneau de valuation discrète de corps de fractions et soit une courbe propre et lisse sur . Nous montrons qu’on peut munir (sous certaines hypothèses faibles) la cohomologie de de Rham de sur d’une structure entière canonique : c’est-à-dire, d’un sous--réseau qui est fonctoriel pour les morphismes finis (et génériquement étales) de courbes sur , et qui est son propre dual par rapport au cup-produit sur . Notre construction de ce réseau utilise une classe de -modèles normaux et propres de et les faisceaux dualisants relatifs. Nous montrons que notre réseau contient le réseau fourni par le complexe de de Rham (tronqué) d’un -modèle propre et régulier de . L’indice pour cette inclusion est un invariant numérique de , qu’on appelle le conducteur de de Rham. Partant d’un travail de Bloch et de Liu-Saito, nous prouvons que le conducteur de de Rham est majoré par le conducteur d’Artin, et minoré par le conducteur efficace. Nous étudions ensuite comment la position de notre réseau canonique varie sous les extensions finies de scalaires.
Keywords: de Rham cohomology, $p$-adic local Langlands, curve, rational singularities, arithmetic surface, Grothendieck duality, Artin conductor, efficient conductor, simultaneous resolution of singularities
Mot clés : cohomologie de de Rham, le programme de Langlands $p$-adique, courbe, singularités rationnelle, surface arithmétique, conducteur d’Artin, conducteur efficace, résolution simultanée des singularités
@article{AIF_2009__59_6_2255_0, author = {Cais, Bryden}, title = {Canonical integral structures on the de {Rham} cohomology of curves}, journal = {Annales de l'Institut Fourier}, pages = {2255--2300}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2490}, mrnumber = {2640920}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2490/} }
TY - JOUR AU - Cais, Bryden TI - Canonical integral structures on the de Rham cohomology of curves JO - Annales de l'Institut Fourier PY - 2009 SP - 2255 EP - 2300 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2490/ DO - 10.5802/aif.2490 LA - en ID - AIF_2009__59_6_2255_0 ER -
%0 Journal Article %A Cais, Bryden %T Canonical integral structures on the de Rham cohomology of curves %J Annales de l'Institut Fourier %D 2009 %P 2255-2300 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2490/ %R 10.5802/aif.2490 %G en %F AIF_2009__59_6_2255_0
Cais, Bryden. Canonical integral structures on the de Rham cohomology of curves. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2255-2300. doi : 10.5802/aif.2490. http://archive.numdam.org/articles/10.5802/aif.2490/
[1] Simultaneous resolution for algebraic surfaces, Amer. J. Math., Volume 78 (1956), pp. 761-790 | DOI | MR | Zbl
[2] Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York, 1965, pp. 111-152 | MR | Zbl
[3] Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21-71 | MR | Zbl
[4] Lipman’s proof of resolution of singularities for surfaces, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 267-287 (Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984) | MR | Zbl
[5] de Rham cohomology and conductors of curves, Duke Math. J., Volume 54 (1987) no. 2, pp. 295-308 | DOI | MR | Zbl
[6] Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261, Springer-Verlag, Berlin, 1984 (A systematic approach to rigid analytic geometry) | MR | Zbl
[7] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21, Springer-Verlag, Berlin, 1990 | MR | Zbl
[8] Canonical extensions of Néron models of Jacobians (2008) (Submitted)
[9] Grothendieck duality and base change, Lecture Notes in Mathematics, 1750, Springer-Verlag, Berlin, 2000 | MR | Zbl
[10] Arithmetic moduli of generalized elliptic curves, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 209-278 | DOI | MR | Zbl
[11] has connected fibers, Doc. Math., Volume 8 (2003), p. 331-408 (electronic) | EuDML | MR | Zbl
[12] Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 | DOI | EuDML | Numdam | MR | Zbl
[13] Relèvements modulo et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987) no. 2, pp. 247-270 | DOI | EuDML | MR | Zbl
[14] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 75-109 | DOI | EuDML | Numdam | MR | Zbl
[15] Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, p. 143-316. Lecture Notes in Math., Vol. 349 | MR | Zbl
[16] Rationalité des singularités canoniques, Invent. Math., Volume 64 (1981) no. 1, pp. 1-6 | DOI | EuDML | MR | Zbl
[17] On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Volume 164 (2006) no. 1, pp. 1-84 | DOI | MR | Zbl
[18] Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math., 1960–7 no. 4,8,11,17,20,24,28,37
[19] Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966 | EuDML | MR
[20] Curves over discrete valuation rings, Amer. J. Math., Volume 90 (1968), pp. 380-405 | DOI | MR | Zbl
[21] Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 195-279 | DOI | EuDML | Numdam | MR | Zbl
[22] Desingularization of two-dimensional schemes, Ann. Math. (2), Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl
[23] Conducteur et discriminant minimal de courbes de genre , Compositio Math., Volume 94 (1994) no. 1, pp. 51-79 | EuDML | Numdam | MR | Zbl
[24] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, 2002 (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[25] Stable reduction of finite covers of curves, Compos. Math., Volume 142 (2006) no. 1, pp. 101-118 | DOI | MR | Zbl
[26] Models of curves and finite covers, Compositio Math., Volume 118 (1999) no. 1, pp. 61-102 | DOI | MR | Zbl
[27] Inequality for conductor and differentials of a curve over a local field, J. Algebraic Geom., Volume 9 (2000) no. 3, pp. 409-424 | MR | Zbl
[28] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989 (Translated from the Japanese by M. Reid) | MR | Zbl
[29] Universal extensions and one dimensional crystalline cohomology, Springer-Verlag, Berlin, 1974 (Lecture Notes in Mathematics, Vol. 370) | MR | Zbl
[30] Two-dimensional representations in the arithmetic of modular curves, Astérisque (1991) no. 196-197, p. 6, 215-255 (1992) Courbes modulaires et courbes de Shimura (Orsay, 1987/1988) | MR | Zbl
[31] Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. (1970) no. 38, pp. 27-76 | DOI | EuDML | Numdam | MR | Zbl
[32] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | EuDML | MR | Zbl
[33] Banach space representations and Iwasawa theory, Israel J. Math., Volume 127 (2002), pp. 359-380 | DOI | MR | Zbl
Cited by Sources: