Let be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in as those intersecting only Bruhat cells in corresponding to involutions in the Weyl group of .
Soit un groupe algébrique réductif connexe, sur un corps algébriquement clos de caractéristique zéro ou bonne et impaire. Nous caractérisons les classes de conjugaison sphériques de comme celles ayant une intersection seulement avec des cellules de Bruhat de correspondantes à des involutions dans le groupe de Weyl de .
Keywords: Conjugacy class, spherical homogeneous space, Bruhat decomposition
Mot clés : classe de conjugaison, espace homogène sphérique, décomposition de Bruhat
@article{AIF_2009__59_6_2329_0, author = {Carnovale, Giovanna}, title = {Spherical conjugacy classes and the {Bruhat} decomposition}, journal = {Annales de l'Institut Fourier}, pages = {2329--2357}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2492}, zbl = {1195.20051}, mrnumber = {2640922}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2492/} }
TY - JOUR AU - Carnovale, Giovanna TI - Spherical conjugacy classes and the Bruhat decomposition JO - Annales de l'Institut Fourier PY - 2009 SP - 2329 EP - 2357 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2492/ DO - 10.5802/aif.2492 LA - en ID - AIF_2009__59_6_2329_0 ER -
%0 Journal Article %A Carnovale, Giovanna %T Spherical conjugacy classes and the Bruhat decomposition %J Annales de l'Institut Fourier %D 2009 %P 2329-2357 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2492/ %R 10.5802/aif.2492 %G en %F AIF_2009__59_6_2329_0
Carnovale, Giovanna. Spherical conjugacy classes and the Bruhat decomposition. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2329-2357. doi : 10.5802/aif.2492. http://archive.numdam.org/articles/10.5802/aif.2492/
[1] Linear Algebraic Groups, W.A. Benjamin, Inc., 1969 | MR | Zbl
[2] Éléments de Mathématique. Groupes et Algèbres de Lie, Chapitres 4,5, et 6, Masson, Paris, 1981 | MR
[3] Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., Volume 55 (1986), pp. 191-198 | DOI | MR | Zbl
[4] Classification des espaces homogènes sphériques, Compositio Math., Volume 63 (1987), pp. 189-208 | Numdam | MR | Zbl
[5] Spherical orbits and representations of , Transformation Groups, Volume 10 (2005) no. 1, pp. 29-62 | DOI | MR | Zbl
[6] Spherical conjugacy classes and involutions in the Weyl group, Math. Z., Volume 260 (2008) no. 1, pp. 1-23 | DOI | MR | Zbl
[7] Simple Groups of Lie Type, Pure and Applied Mathematics XXVIII, 1972 | MR | Zbl
[8] Finite Groups of Lie Type, Pure and Applied Mathematics, 1985 | MR | Zbl
[9] Quantum coadjoint action, J. Amer. Math. Soc., Volume 5 (1992), pp. 151-190 | DOI | MR | Zbl
[10] Some Quantum Analogues of Solvable Lie Groups, Geometry and Analysis, Tata Institute of Fundamental Research,(Bombay1992) (1995), pp. 41-65 | MR | Zbl
[11] Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math., Volume 214 (2004) no. 2, pp. 245-261 | DOI | MR | Zbl
[12] Intersection of conjugacy classes with Bruhat cells in Chevalley groups: the cases , , J. Pure Appl. Algebra, Volume 209 (2007) no. 3, pp. 703-723 | DOI | MR | Zbl
[13] Double Bruhat cells and total positivity, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 335-380 | DOI | MR | Zbl
[14] Spherical nilpotent orbits in positive characteristic, Pacific J. Math., Volume 237 (2008), p. 241-186 | DOI | MR
[15] Contractions of the actions of reductive algebraic groups in arbitrary characteristic, Invent. Math., Volume 107 (1992), pp. 127-133 | DOI | MR | Zbl
[16] Conjugacy Classes in Semisimple Algebraic Groups, AMS, Providence, Rhode Island, 1995 | MR | Zbl
[17] On the set of orbits for a Borel subgroup, Comment. Math. Helvetici, Volume 70 (1995), pp. 285-309 | DOI | MR | Zbl
[18] Complexity and nilpotent orbits, Manuscripta Math., Volume 83 (1994), pp. 223-237 | DOI | MR | Zbl
[19] On spherical nilpotent orbits and beyond, Ann. Inst. Fourier, Grenoble, Volume 49 (1999) no. 5, pp. 1453-1476 | DOI | Numdam | MR | Zbl
[20] The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford University Press (1969), pp. 373-391 | MR | Zbl
[21] Some results on algebraic groups with involutions, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Volume 6, Adv. Stud. Pure Math., North-Holland, Amsterdam (1985), pp. 525-543 | MR | Zbl
[22] Linear Algebraic Groups, Second Edition, 9, Progress in Mathematics Birkhäuser, 1998 | MR | Zbl
[23] Conjugacy classes, Seminar on algebraic groups and related finite groups (LNM), Volume 131, Springer-Verlag, Berlin Heidelberg New York (1970), pp. 167-266 | MR | Zbl
[24] Regular elements of semisimple algebraic groups, I.H.E.S. Publ. Math., Volume 25 (1965), pp. 49-80 | Numdam | MR | Zbl
[25] Complexity of action of reductive groups, Func. Anal. Appl., Volume 20 (1986), pp. 1-11 | DOI | MR | Zbl
[26] Cluster algebras of finite type via Coxeter elements and principal minors, Transformation Groups, Volume 13 (2008) no. 3–4, pp. 855-895 | DOI | MR
Cited by Sources: