Let be a set-germ at such that . We say that is a direction of at if there is a sequence of points tending to such that as . Let denote the set of all directions of at .
Let be subanalytic set-germs at such that . We study the problem of whether the dimension of the common direction set, is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of and are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.
Soit un germe d’ensemble en tel que . On dit que est une direction de en s’il existe une suite de points qui converge vers telle que quand . L’ensemble des directions de en est noté . Soient deux germes en d’ensemble sous-analytique tels que .
On étudie le problème suivant : la dimension de l’intersection, , est-elle invariante par homéomorphisme bi-Lipschitzien ? On montre que la réponse est non en général, néanmoins la propriété est vraie, lorsque les images de et sont sous-analytiques. En particulier, les ensembles des directions de deux germes sous-analytiques, équivalents par homéomorphisme bi-Lipschitzien, ont la même dimension.
Keywords: Subanalytic set, direction set, bi-Lipschitz homeomorphism
Mot clés : ensemble sous-analytique, dimension de l’intersection, homéomorphisme bi-Lipschitzien
@article{AIF_2009__59_6_2445_0, author = {Koike, Satoshi and Paunescu, Laurentiu}, title = {The directional dimension of subanalytic sets is invariant under {bi-Lipschitz} homeomorphisms}, journal = {Annales de l'Institut Fourier}, pages = {2445--2467}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2496}, zbl = {1184.14086}, mrnumber = {2640926}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2496/} }
TY - JOUR AU - Koike, Satoshi AU - Paunescu, Laurentiu TI - The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms JO - Annales de l'Institut Fourier PY - 2009 SP - 2445 EP - 2467 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2496/ DO - 10.5802/aif.2496 LA - en ID - AIF_2009__59_6_2445_0 ER -
%0 Journal Article %A Koike, Satoshi %A Paunescu, Laurentiu %T The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms %J Annales de l'Institut Fourier %D 2009 %P 2445-2467 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2496/ %R 10.5802/aif.2496 %G en %F AIF_2009__59_6_2445_0
Koike, Satoshi; Paunescu, Laurentiu. The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2445-2467. doi : 10.5802/aif.2496. http://archive.numdam.org/articles/10.5802/aif.2496/
[1] Arc-analytic functions, Invent. math., Volume 101 (1990), pp. 411-424 | DOI | MR | Zbl
[2] Sur les exposants de Lojasiewicz, Comment. Math. Helv., Volume 50 (1975), pp. 493-507 | DOI | MR | Zbl
[3] La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, Volume 280 (1975), pp. 365-367 | MR | Zbl
[4] The modified analytic trivialization via the weighted blowing up, J. Math. Soc. Japan, Volume 44 (1992), pp. 455-459 | DOI | MR | Zbl
[5] Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities (Pitman Research Notes in Mathematics Series), Volume 381, Longman, 1998, pp. 8-29 | MR | Zbl
[6] Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan, Volume 52 (2000), pp. 433-446 | DOI | MR | Zbl
[7] Arc Spaces and additive invariants in real algebraic and analytic geometry, Panoramas et Synthèses, Société Mathématique de France, 2008 no. 24 | MR | Zbl
[8] Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math., Volume 136 (2003), pp. 217-235 | DOI | MR | Zbl
[9] Invariants of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications, Volume 65 (2004), pp. 67-75 | DOI | MR | Zbl
[10] Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453-493 | MR | Zbl
[11] Stratification and flatness, Real and Complex Singularities, Sithoff and Noordhoff, 1977, pp. 196-265 | MR | Zbl
[12] On strong -equivalence of real analytic functions, J. Math. Soc. Japan, Volume 45 (1993), pp. 313-320 | DOI | MR | Zbl
[13] The Briançon-Speder and Oka families are not biLipschitz trivial, Several Topics in Singularity Theory, RIMS Kokyuroku, Volume 1328 (2003), pp. 165-173 | Zbl
[14] A complete determination of -sufficiency in , Invent. math., Volume 8 (1969), pp. 226-235 | DOI | MR | Zbl
[15] Characterizations of -sufficiency of jets, Topology, Volume 11 (1972), pp. 115-131 | DOI | MR | Zbl
[16] Une classification des singularités réels, C.R. Acad. Sci. Paris, Volume 288 (1979), pp. 809-812 | MR | Zbl
[17] The modified analytic trivialization of singularities, J. Math. Soc. Japan , Volume 32 (1980), pp. 605-614 | DOI | MR | Zbl
[18] On classification of real singularities, Invent. math., Volume 82 (1985), pp. 257-262 | DOI | MR | Zbl
[19] Ensembles semi-algébriques symétriques par arcs, Math. Ann., Volume 282 (1988), pp. 445-462 | DOI | MR | Zbl
[20] Ensembles semi-analytiques, Inst. Hautes Etudes Sci. Lectute Note (1967)
[21] Lipschitz equisingularity, 243, Dissertationes Math., 1985 | MR | Zbl
[22] A criterion for Lipschitz equisingularity, Bull. Acad. Polon. Sci., Volume 37 (1988), pp. 109-116 | MR | Zbl
[23] Lipschitz equisingularity problems, Several Topics in Singularity Theory, RIMS Kokyuroku, Volume 1328 (2003), pp. 73-113 | Zbl
[24] On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary Math., Volume 90 (1989), pp. 199-210 | MR | Zbl
[25] Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier, Volume 38 (1988), pp. 189-213 | DOI | Numdam | MR | Zbl
[26] Lipschitz stratification of real analytic sets, Singularities, Banach Center Publications, Volume 20 (1988), pp. 323-333 | MR | Zbl
[27] Lipschitz stratification of subanalytic sets, Ann. Sci. Ec. Norm. Sup., Volume 27 (1994), pp. 661-696 | Numdam | MR | Zbl
[28] An example of blow-analytic homeomorphism, Real Analytic and Algebraic Singularities (Pitman Research Notes in Mathematics Series), Volume 381, Longman, 1998, pp. 62-63 | MR | Zbl
Cited by Sources: