Soit un anneau commutatif, une -algèbre commutative et l’anneau filtré des opérateurs différentiels -linéaires de . Nous montrons que : (1) l’anneau gradué admet un plongement canonique dans le dual gradué de l’algèbre symétrique du module des différentielles de sur , qui a une structure canonique de puissances divisées. (2) Il existe un morphisme canonique de l’algèbre des puissances divisées du module des dérivations -linéaires et intégrables dans le sens de Hasse-Schmidt de vers . (3) Les morphismes et forment partie d’un diagramme commutatif canonique.
Let be a commutative ring, a commutative -algebra and the filtered ring of -linear differential operators of . We prove that: (1) The graded ring admits a canonical embedding into the graded dual of the symmetric algebra of the module of differentials of over , which has a canonical divided power structure. (2) There is a canonical morphism from the divided power algebra of the module of -linear Hasse–Schmidt integrable derivations of to . (3) Morphisms and fit into a canonical commutative diagram.
Classification : 13N15, 13N10
Mots clés : dérivation, dérivation intégrable, opérateur différentiel, structure de puissances divisées
@article{AIF_2009__59_7_2979_0, author = {Narv\'aez Macarro, Luis}, title = {Hasse{\textendash}Schmidt derivations, divided powers and differential smoothness}, journal = {Annales de l'Institut Fourier}, pages = {2979--3014}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2513}, mrnumber = {2649344}, zbl = {1184.13076}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2513/} }
TY - JOUR AU - Narváez Macarro, Luis TI - Hasse–Schmidt derivations, divided powers and differential smoothness JO - Annales de l'Institut Fourier PY - 2009 DA - 2009/// SP - 2979 EP - 3014 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2513/ UR - https://www.ams.org/mathscinet-getitem?mr=2649344 UR - https://zbmath.org/?q=an%3A1184.13076 UR - https://doi.org/10.5802/aif.2513 DO - 10.5802/aif.2513 LA - en ID - AIF_2009__59_7_2979_0 ER -
Narváez Macarro, Luis. Hasse–Schmidt derivations, divided powers and differential smoothness. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2979-3014. doi : 10.5802/aif.2513. http://archive.numdam.org/articles/10.5802/aif.2513/
[1] Higher derivations and integral closure, Amer. J. Math., Volume 100 (1978) no. 3, pp. 495-521 | Article | MR 501221 | Zbl 0386.13008
[2] Notes on crystalline cohomology, Mathematical Notes, 21, Princeton Univ. Press, Princeton, N.J., 1978 | MR 491705 | Zbl 0383.14010
[3] Commutative Algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer Verlag, New York, 1995 | MR 1322960 | Zbl 0819.13001
[4] Hasse-Schmidt derivations and coefficient fields in positive characteristics, J. Algebra, Volume 265 (2003) no. 1, pp. 200-210 | Article | MR 1984906 | Zbl 1099.13518
[5] The fundamental form of an inseparable extension, Trans. Amer. Math. Soc., Volume 227 (1977), pp. 165-184 | Article | MR 429861 | Zbl 0354.12023
[6] Éléments de Géométrie Algébrique IV: Étude locale des schémas et de morphismes de schémas (Quatrième Partie), Inst. Hautes Études Sci. Publ. Math., 32, Press Univ. de France, Paris, 1967 | Numdam | Zbl 0153.22301
[7] Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine U. Angew. Math., Volume 177 (1937), pp. 223-239 | Zbl 0017.10101
[8] Divided powers (2006) (Unpublished notes)
[9] Integrable derivations, Nagoya Math. J., Volume 87 (1982), pp. 227-245 | MR 676593 | Zbl 0458.13002
[10] Commutative Ring Theory, Cambridge studies in advanced mathematics, 8, Cambridge Univ. Press, Cambidge, 1986 | MR 879273 | Zbl 0603.13001
[11] Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup., Volume 80 (1963) no. 3, pp. 213-348 | Numdam | MR 161887 | Zbl 0117.02302
[12] Les algèbres à puissances divisées, Bull. Sci. Math., Volume 89 (1965) no. 2, pp. 75-91 | MR 193127 | Zbl 0145.04503
[13] Differential Operators and Nakai’s Conjecture (1998) (Ph. D. Thesis)
[14] Jets via Hasse–Schmidt derivations, Diophantine geometry (CRM Series), Volume 4, Ed. Norm., Pisa, 2007, pp. 335-361 | MR 2349665
Cité par Sources :