On fundamental groups of algebraic varieties and value distribution theory
[Groupes fondamentaux des variétés algébriques et théorie de distributions des valeurs]
Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 551-563.

Si une variété X projective lisse admet une application holomorphe non-dégénérée X du plan complexe , alors pour chaque représentation linéaire de dimension finie du groupe fondamental de X l’image de cette représentation est presque abélienne. Cela soutient une conjecture proposée par F. Campana, parue dans ce même journal en 2004.

If a smooth projective variety X admits a non-degenerate holomorphic map X from the complex plane , then for any finite dimensional linear representation of the fundamental group of X the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.

DOI : 10.5802/aif.2532
Classification : 32H30, 14F35
Keywords: Value distribution theory, holomorphic map, fundamental group, algebraic variety
Mot clés : théorie de distributions des valeurs, application holomorphe, groupe fondamental, variété algébrique
Yamanoi, Katsutoshi 1

1 Kumamoto University Graduate School of Science and Technology Kurokami, Kumamoto 860-8555 (Japan)
@article{AIF_2010__60_2_551_0,
     author = {Yamanoi, Katsutoshi},
     title = {On fundamental groups of algebraic varieties and value distribution theory},
     journal = {Annales de l'Institut Fourier},
     pages = {551--563},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {2},
     year = {2010},
     doi = {10.5802/aif.2532},
     zbl = {1193.32010},
     mrnumber = {2667786},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2532/}
}
TY  - JOUR
AU  - Yamanoi, Katsutoshi
TI  - On fundamental groups of algebraic varieties and value distribution theory
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 551
EP  - 563
VL  - 60
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2532/
DO  - 10.5802/aif.2532
LA  - en
ID  - AIF_2010__60_2_551_0
ER  - 
%0 Journal Article
%A Yamanoi, Katsutoshi
%T On fundamental groups of algebraic varieties and value distribution theory
%J Annales de l'Institut Fourier
%D 2010
%P 551-563
%V 60
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2532/
%R 10.5802/aif.2532
%G en
%F AIF_2010__60_2_551_0
Yamanoi, Katsutoshi. On fundamental groups of algebraic varieties and value distribution theory. Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 551-563. doi : 10.5802/aif.2532. http://archive.numdam.org/articles/10.5802/aif.2532/

[1] A’Campo, Norbert; Burger, Marc Réseaux arithmétiques et commensurateur d’après G. A. Margulis, Invent. Math., Volume 116 (1994) no. 1-3, pp. 1-25 | DOI | MR | Zbl

[2] Buzzard, Gregery T.; Lu, Steven S. Y. Algebraic surfaces holomorphically dominable by C 2 , Invent. Math., Volume 139 (2000) no. 3, pp. 617-659 | DOI | MR | Zbl

[3] Campana, F. Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom., Volume 10 (2001) no. 4, pp. 599-622 | MR | Zbl

[4] Campana, Frédéric Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl

[5] Eyssidieux, Philippe Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math., Volume 156 (2004) no. 3, pp. 503-564 | DOI | MR | Zbl

[6] Griffiths, Phillip; Schmid, Wilfried Locally homogeneous complex manifolds, Acta Math., Volume 123 (1969), pp. 253-302 | DOI | MR | Zbl

[7] Griffiths, Phillip; Schmid, Wilfried Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, Bombay, 1975, pp. 31-127 | MR | Zbl

[8] Gromov, Mikhail; Schoen, Richard Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) no. 76, pp. 165-246 | DOI | Numdam | MR | Zbl

[9] Jost, J.; Zuo, K. Harmonic maps into Bruhat-Tits buildings and factorizations of p-adically unbounded representations of π 1 of algebraic varieties. I, J. Algebraic Geom., Volume 9 (2000) no. 1, pp. 1-42 | MR | Zbl

[10] Katzarkov, L. On the Shafarevich maps, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 173-216 | MR | Zbl

[11] Kollár, János Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | MR | Zbl

[12] Noguchi, Junjiro Meromorphic mappings of a covering space over C m into a projective variety and defect relations, Hiroshima Math. J., Volume 6 (1976) no. 2, pp. 265-280 | MR | Zbl

[13] Noguchi, Junjiro On the value distribution of meromorphic mappings of covering spaces over C m into algebraic varieties, J. Math. Soc. Japan, Volume 37 (1985) no. 2, pp. 295-313 | DOI | MR | Zbl

[14] Noguchi, Junjiro; Ochiai, Takushiro Geometric function theory in several complex variables, Translations of Mathematical Monographs, 80, American Mathematical Society, Providence, RI, 1990 (Translated from the Japanese by Noguchi) | MR | Zbl

[15] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9), Volume 88 (2007) no. 3, pp. 293-306 | MR | Zbl

[16] Simpson, Carlos T. Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 5-95 | DOI | Numdam | MR | Zbl

[17] Yamanoi, Katsutoshi Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties II (preprint)

[18] Yamanoi, Katsutoshi Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math., Volume 16 (2004) no. 5, pp. 749-788 | DOI | MR | Zbl

[19] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser Verlag, Basel, 1984 | MR | Zbl

[20] Zuo, Kang Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π 1 of compact Kähler manifolds, J. Reine Angew. Math., Volume 472 (1996), pp. 139-156 | DOI | MR | Zbl

[21] Zuo, Kang Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, 1708, Springer-Verlag, Berlin, 1999 | MR | Zbl

Cité par Sources :