Changements de base explicites des représentations supercuspidales de U(1,1)(F0)
Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 905-938.

Soit F0 un corps local non archimédien de caractéristique nulle et de caractéristique résiduelle impaire. On décrit explicitement les changements de base des représentations supercuspidales de U(1,1)(F0). C’est une étape vers la description du changement de base des paquets endoscopiques supercuspidaux de U(2,1)(F0).

Let F0 be a nonarchimedean local field of characterisitic 0 and odd residual characteristic. We describe explicitly the two base change lifts of supercuspidal representations of U(1,1)(F0). This represents a step towards the goal of describing base change of endoscopic supercuspidal L-packets of U(2,1)(F0).

DOI : 10.5802/aif.2542
Classification : 22E50, 11F70
Mot clés : corps local, changement de base, groupe unitaire, représentations supercuspidales, L-paquets
Keywords: Local field, base change, unitary group, supercuspidal representations, L-packets
Blasco, Laure 1

1 Université Paris-Sud Département de Mathématiques U.M.R. 8628 du C.N.R.S. Bâtiment 425 91405 Orsay cedex (France)
@article{AIF_2010__60_3_905_0,
     author = {Blasco, Laure},
     title = {Changements de base explicites  des repr\'esentations supercuspidales de $U(1,1)(F_0)$},
     journal = {Annales de l'Institut Fourier},
     pages = {905--938},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {3},
     year = {2010},
     doi = {10.5802/aif.2542},
     zbl = {1210.22009},
     mrnumber = {2680819},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.2542/}
}
TY  - JOUR
AU  - Blasco, Laure
TI  - Changements de base explicites  des représentations supercuspidales de $U(1,1)(F_0)$
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 905
EP  - 938
VL  - 60
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2542/
DO  - 10.5802/aif.2542
LA  - fr
ID  - AIF_2010__60_3_905_0
ER  - 
%0 Journal Article
%A Blasco, Laure
%T Changements de base explicites  des représentations supercuspidales de $U(1,1)(F_0)$
%J Annales de l'Institut Fourier
%D 2010
%P 905-938
%V 60
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2542/
%R 10.5802/aif.2542
%G fr
%F AIF_2010__60_3_905_0
Blasco, Laure. Changements de base explicites  des représentations supercuspidales de $U(1,1)(F_0)$. Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 905-938. doi : 10.5802/aif.2542. https://www.numdam.org/articles/10.5802/aif.2542/

[1] Adler, J.; Lansky, J. Depth-zero base change for unramified U(2,1), J. Number Theory, Volume 114 (2005), pp. 324-360 | DOI | MR | Zbl

[2] Adler, J.; Lansky, J. Depth-zero base change for ramified U(2,1), 2008 (arXiv :0807.1528v1)

[3] Blasco, L. Description du dual admissible de U(2,1)(F) par la théorie des types de C. Bushnell et P. Kutzko, Manuscripta Math., Volume 107 (2002), pp. 151-186 | DOI | MR | Zbl

[4] Blasco, L. Types, paquets et changement de base : l’exemple de U(2,1)(F0), I, Canadian J. Math., Volume 60 (2008), pp. 790-821 | DOI | MR | Zbl

[5] Bushnell, C.; Henniart, G. Local tame lifting for GL(N) I : simple characters, Publ. Math. IHES, Volume 83 (1996), pp. 105-233 | Numdam | MR | Zbl

[6] Bushnell, C.; Henniart, G. Local tame lifting for GL(n) II : wildly ramified supercuspidals, Astérisque, Soc. Math. France, Volume 254 (1999), pp. vi+105 | Numdam | MR | Zbl

[7] Bushnell, C.; Henniart, G. The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 335, Springer-Verlag, Berlin, 2006 | MR | Zbl

[8] Ennola, V. On the characters of the finite unitary groups, Ann. Acad. Scien. Fenn., Volume 323 (1963), pp. 1-35 | MR | Zbl

[9] Flicker, Y. Stable and labile base change for U(2), Duke Math. J., Volume 49 (1982), pp. 691-729 | DOI | MR | Zbl

[10] Flicker, Y. On distinguished representations, J. Reine Angew. Math., Volume 418 (1991), pp. 134-172 | MR | Zbl

[11] Fröhlich, A. Principal orders and embedding of local fields in algebras, Proc. London Math. Soc., Volume 54 (1987), pp. 247-266 | DOI | MR | Zbl

[12] Hakim, J.; Murnaghan, F. Two types of distinguished supercuspidal representations, Int. Math. Res. Not., Volume 35 (2002), pp. 1857-1889 | DOI | MR | Zbl

[13] Jacquet, H.; Langlands, R. Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin, 1970 | MR | Zbl

[14] Kottwitz, R. Rational conjugacy classes on reductive groups, Duke Math. J., Volume 49 (1982), pp. 785-806 | DOI | MR | Zbl

[15] Kutzko, P. C.; Sally, P. J. Jr. All supercuspidal representations of SL over a p-adic field are induced, Representation theory of reductive groups (Park City, Utah, 1982) (Progr. Math.), Volume 40, Birkhäuser, Boston, MA, 1983, pp. 185-196 | Zbl

[16] Labesse, J.-P.; Langlands, R. L-indistinguishability for SL(2), Canadian J. Math., Volume 31 (1979), pp. 726-785 | DOI | MR | Zbl

[17] Morris, L. Tamely ramified supercuspidal representations, Ann. scient. Éc. Norm. Sup., Volume 29 (1996), pp. 639-667 | Numdam | MR | Zbl

[18] Rogawski, J. Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, Princeton, NJ, 1990 | MR | Zbl

[19] Springer, T. A. Characters of special groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) (Lecture Notes in Mathematics, Vol. 131), Springer, Berlin, 1970, pp. 121-166 | MR | Zbl

[20] Stevens, S. Double coset decompositions and intertwining, Manuscripta Math., Volume 106 (2001), pp. 349-364 | DOI | MR | Zbl

Cité par Sources :