A Fatou-Julia decomposition of transversally holomorphic foliations
[Une decomposition de Fatou-Julia de feuilletages transversalement holomorphes]
Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 1057-1104.

Une décomposition de Fatou-Julia d’un feuilletage transversalement holomorphe de codimension complexe un a été obtenue par Ghys, Gomez-Mont et Saludes. Dans cet article, nous proposons une autre décomposition en utilisant des familles normales. Ces deux décompositions ont des propriétés communes, ainsi que certaines différences. Il est montré que l’ensemble de Fatou pour notre décomposition contient toujours celui pour la décomposition de Ghys, Gomez-Mont et Saludes, et aussi que l’inclusion est stricte pour certains exemples. Cette propriété est importante pour une version du théorème de Duminy en relation avec les classes caractéristiques secondaires. Quelques similitudes et différences entre les ensembles de Julia de feuilletages et ceux d’itérations d’applications sont présentées. Une application aux études de la métrique transversale de Kobayashi est aussi donnée.

A Fatou-Julia decomposition of transversally holomorphic foliations of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In this paper, we propose another decomposition in terms of normal families. Two decompositions have common properties as well as certain differences. It will be shown that the Fatou sets in our sense always contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This property is important when discussing a version of Duminy’s theorem in relation to secondary characteristic classes. The structure of Fatou sets is studied in detail, and some properties of Julia sets are discussed. Some similarities and differences between the Julia sets of foliations and those of mapping iterations will be shown. An application to the study of the transversal Kobayashi metrics is also given.

DOI : 10.5802/aif.2547
Classification : 57R30, 58H05, 37F35, 37F75
Keywords: Holomorphic foliations, Fatou set, Julia set, Riemannian foliations
Mot clés : feuilletages holomorphes, ensemble de Fatou, ensemble de Julia, feuilletages riemanniens
Asuke, Taro 1

1 University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba, Meguro-ku Tokyo 153-8914 (Japan)
@article{AIF_2010__60_3_1057_0,
     author = {Asuke, Taro},
     title = {A {Fatou-Julia} decomposition of transversally holomorphic foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {1057--1104},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {3},
     year = {2010},
     doi = {10.5802/aif.2547},
     zbl = {1198.57020},
     mrnumber = {2680824},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2547/}
}
TY  - JOUR
AU  - Asuke, Taro
TI  - A Fatou-Julia decomposition of transversally holomorphic foliations
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 1057
EP  - 1104
VL  - 60
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2547/
DO  - 10.5802/aif.2547
LA  - en
ID  - AIF_2010__60_3_1057_0
ER  - 
%0 Journal Article
%A Asuke, Taro
%T A Fatou-Julia decomposition of transversally holomorphic foliations
%J Annales de l'Institut Fourier
%D 2010
%P 1057-1104
%V 60
%N 3
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2547/
%R 10.5802/aif.2547
%G en
%F AIF_2010__60_3_1057_0
Asuke, Taro. A Fatou-Julia decomposition of transversally holomorphic foliations. Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 1057-1104. doi : 10.5802/aif.2547. http://archive.numdam.org/articles/10.5802/aif.2547/

[1] Ahlfors, Lars V. Conformal Invariants, McGraw-Hill Book Company, New York, 1973 (Topics in Geometric Function Theory) | MR | Zbl

[2] Asuke, Taro On the real secondary classes of transversely holomorphic foliations, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 995-1017 | DOI | EuDML | Numdam | MR | Zbl

[3] Asuke, Taro Localization and residue of the Bott class, Topology, Volume 43 (2004) no. 2, pp. 289-317 | DOI | MR | Zbl

[4] Bott, Raoul; Heitsch, James A remark on the integral cohomology of B𝛤 q , Topology, Volume 11 (1972), pp. 141-146 | DOI | MR | Zbl

[5] Brunella, Marco; Nicolau, Marcel Sur les hypersurfaces solutions des équations de Pfaff, C. R. Acad. Sci. Paris Sér. I Math., Volume 329 (1999) no. 9, pp. 793-795 | DOI | MR | Zbl

[6] Cartan, Henri Sur les groupes de transformations analytiques, Hermann, Paris, 1935 | Zbl

[7] Deroin, B.; Kleptsyn, V. Random conformal dynamical systems, Geom. Funct. Anal., Volume 17 (2007), pp. 1043-1105 | DOI | MR | Zbl

[8] Duchamp, Thomas; Kalka, Morris Holomorphic foliations and the Kobayashi metric, Proc. Amer. Math. Soc., Volume 67 (1977), pp. 117-122 | DOI | MR | Zbl

[9] Duminy, G. L’invariant de Godbillon-Vey d’un feuilletage se localise dans les feuilles ressort preprint (1982)

[10] Ghys, Étienne Flots transversalement affines et tissus feuilletés, Mémoire de la Société Mathématiques de France (N.S.), Volume 46 (1991), pp. 123-150 | Numdam | MR | Zbl

[11] Ghys, Étienne; Gómez-Mont, Xavier; Saludes, Jodi Fatou and Julia components of transversely holomorphic foliations, Essays on geometry and related topics, Vol. 1, 2 (Monogr. Enseign. Math.), Volume 38, Enseignement Math., Geneva, 2001, pp. 287-319 | MR | Zbl

[12] Haefliger, André Groupoïdes d’holonomie et classifiants, Astérisque (1984) no. 116, pp. 70-97 Transversal structure of foliations (Toulouse, 1982) | Numdam | Zbl

[13] Haefliger, André Pseudogroups of local isometries, Differential geometry (Santiago de Compostela, 1984) (Res. Notes in Math.), Volume 131, Pitman, Boston, MA, 1985, pp. 174-197 | MR | Zbl

[14] Haefliger, André Leaf closures in Riemannian foliations, A fête of topology, Academic Press, Boston, MA, 1988, pp. 3-32 | MR | Zbl

[15] Haefliger, André Foliations and compactly generated pseudogroups, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 275-295 | MR | Zbl

[16] Heitsch, James; Hurder, Steven Secondary classes, Weil measures and the geometry of foliations, J. Differential Geom., Volume 20 (1984), pp. 291-309 | MR | Zbl

[17] Hirsch, M.; Anthony Manning A stable analytic foliation with only exceptional minimal sets, Dynamical systems—Warwick 1974, Proceedings of a Symposium titled “Applications of Topology and Dynamical Systems" held at the University of Warwick, Coventry, 1973/1974. Presented to Professor E. C. Zeeman on his fiftieth birthday, 4th February 1975 (Lecture Notes in Mathematics), Volume 468, Springer-Verlag, Berlin-New York, 1975, pp. 9-10 | MR | Zbl

[18] Hurder, S. The Godbillon measure of amenable foliations, J. Differential Geom., Volume 23 (1986) no. 3, pp. 347-365 | MR | Zbl

[19] Jacoby, Robb Some remarks on the structure of locally compact local groups, Ann. of Math., Volume 66 (1957) no. 1, pp. 36-69 | DOI | MR | Zbl

[20] Matsumoto, Shigenori (private communication)

[21] Molino, Pierre Riemannian foliations, Progress in Mathematics, 73, Birkhäuser, Boston, 1988 (Translated by G. Cairns) | MR | Zbl

[22] Montgomery, Deane; Zippin, Leo Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, N.Y., 1974 (Reprint of the 1955 original) | MR | Zbl

[23] Morosawa, Shunsuke; Nishimura, Yasuichiro; Taniguchi, Masahiko; Ueda, Tetsuo Holomorphic dynamics, Cambridge Studies in Advanced Mathematics, 66, Cambridge University Press, Cambridge, 2000 (Translated from the 1995 Japanese original and revised by the authors) | MR | Zbl

[24] Nicholls, Peter J. The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[25] Phelps, Robert R. Lectures on Choquet’s theorem. Second edition, Lecture Notes in Mathematics, 1757, Springer-Verlag, Berlin, 2001 | MR | Zbl

[26] Royden, H. L. Remarks on the Kobayashi metric, Several complex variables, II, Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970 (Lecture Notes in Math.), Volume 185, Springer-Verlag, Berlin, 1971, pp. 125-137 | MR | Zbl

[27] Royden, H. L. The extension of regular holomorphic maps, Proc. Amer. Math. Soc., Volume 43 (1974), pp. 306-310 | DOI | MR | Zbl

[28] Salem, Éliane Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d’isométries, Ann. Inst. Fourier, Grenoble, Volume 38 (1988) no. 2, pp. 185-200 | DOI | Numdam | MR | Zbl

[29] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., Volume 50 (1979), pp. 171-202 | DOI | Numdam | MR | Zbl

[30] Urbański, Mariusz Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc. (N.S.), Volume 40 (2003) no. 3, pp. 281-321 | DOI | MR | Zbl

[31] Walczak, Paweł Dynamics of foliations, groups and pseudogroups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 64, Birkhäuser Verlag, Basel, 2004 | MR | Zbl

Cité par Sources :