Dans ce travail, nous nous intéressons aux polynômes de Bernstein d’un diviseur linéairement libre réductif. Nous définissons un réseau de Brieskorn pour ces fonctions, qui sont des exemples de singularités non-isolées. Nous démontrons un théorème analogue au résultat de Malgrange qui relate les racines du polynôme de Bernstein aux valeurs propres du résidu de la saturation de ce réseau de Brieskorn.
We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.
Keywords: Brieskorn lattice, Bernstein polynomial, linear free divisors, spectral numbers
Mot clés : réseau de Brieskorn, polynôme de Bernstein, diviseur linéairement libre, nombres spectraux
@article{AIF_2011__61_1_379_0, author = {Sevenheck, Christian}, title = {Bernstein polynomials and spectral numbers for linear free divisors}, journal = {Annales de l'Institut Fourier}, pages = {379--400}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {1}, year = {2011}, doi = {10.5802/aif.2606}, zbl = {1221.34237}, mrnumber = {2828135}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2606/} }
TY - JOUR AU - Sevenheck, Christian TI - Bernstein polynomials and spectral numbers for linear free divisors JO - Annales de l'Institut Fourier PY - 2011 SP - 379 EP - 400 VL - 61 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2606/ DO - 10.5802/aif.2606 LA - en ID - AIF_2011__61_1_379_0 ER -
%0 Journal Article %A Sevenheck, Christian %T Bernstein polynomials and spectral numbers for linear free divisors %J Annales de l'Institut Fourier %D 2011 %P 379-400 %V 61 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2606/ %R 10.5802/aif.2606 %G en %F AIF_2011__61_1_379_0
Sevenheck, Christian. Bernstein polynomials and spectral numbers for linear free divisors. Annales de l'Institut Fourier, Tome 61 (2011) no. 1, pp. 379-400. doi : 10.5802/aif.2606. http://archive.numdam.org/articles/10.5802/aif.2606/
[1] Analytic continuation of generalized functions with respect to a parameter, Functional Analysis and Its Applications, Volume 6 (1972) no. 4, pp. 26-40 | MR | Zbl
[2] Analytic -modules and applications, Mathematics and its Applications, 247, Kluwer Academic Publishers Group, Dordrecht, 1993 | MR
[3] Linear free divisors and quiver representations, Singularities and computer algebra (London Math. Soc. Lecture Note Ser.), Volume 324, Cambridge Univ. Press, Cambridge (2006), pp. 41-77 (Papers from the conference held at the University of Kaiserslautern, Kaiserslautern, October 18–20, 2004) | MR | Zbl
[4] Examples of limits of Frobenius (type) structures: The singularity case (2008) (Preprint math.AG/0806.2011)
[5] The small quantum cohomology of a weighted projective space, a mirror -module and their classical limits (2009) (Preprint math.AG/0909.4063)
[6] Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 4, pp. 1055-1116 | DOI | Numdam | MR | Zbl
[7] Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II, Frobenius manifolds (Aspects Math., E36), Vieweg, Wiesbaden, 2004, pp. 1-18 | MR
[8] Linear free divisors and the global logarithmic comparison theorem., Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 1, pp. 811-850 | DOI | Numdam | MR | Zbl
[9] On the symmetry of b-functions of linear free divisors. (2008) (Preprint math.AG/0807.0560)
[10] Linear free divisors and Frobenius manifolds, Compositio Mathematica, Volume 145 (2009) no. 5, pp. 1305-1350 | DOI | MR
[11] Good bases for some linear free divisors associated to quiver representations (work in progress)
[12] Singular 3.1.0 — A computer algebra system for polynomial computations (2009) (www.singular.uni-kl.de)
[13] Theory of prehomogeneous vector spaces without regularity condition, Publ. Res. Inst. Math. Sci., Volume 27 (1991) no. 6, pp. 861-922 | DOI | MR | Zbl
[14] Nilpotent orbits of a generalization of Hodge structures., J. Reine Angew. Math., Volume 609 (2007), pp. 23-80 | DOI | MR | Zbl
[15] Bernstein polynomial and Tjurina number, Geom. Dedicata, Volume 75 (1999) no. 2, pp. 137-176 | DOI | MR | Zbl
[16] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., Volume 22 (2009) no. 3, pp. 1016-1079 | DOI | MR | Zbl
[17] -functions and holonomic systems. Rationality of roots of -functions, Invent. Math., Volume 38 (1976/77) no. 1, pp. 33-53 | DOI | MR | Zbl
[18] Le théorème de comparaison pour les cycles évanescents, Éléments de la théorie des systèmes différentiels géométriques (Sémin. Congr.), Volume 8, Soc. Math. France, Paris, 2004, pp. 311-389 (Papers from the CIMPA Summer School held in Séville, September 2–13, 1996) | MR
[19] Éléments de la théorie des systèmes différentiels géométriques, Séminaires et Congrès [Seminars and Congresses], 8, Société Mathématique de France, Paris, 2004 (Papers from the CIMPA Summer School held in Séville, September 2–13, 1996) | MR
[20] Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) (Lecture Notes in Mathematics, Vol. 459), Springer, Berlin, 1975, p. 98-119. Lecture Notes in Math., Vol. 459 (Colloque International, réuni à l’Université de Nice, Nice, du 20 au 25 mai 1974) | Zbl
[21] Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann, Éléments de la théorie des systèmes différentiels , géométriques (Sémin. Congr.), Volume 8, Soc. Math. France, Paris, 2004, pp. 165-310 (Papers from the CIMPA Summer School held in Séville, September 2–13, 1996) | MR
[22] Irregularity of an analogue of the Gauss-Manin systems, Bull. Soc. Math. France, Volume 134 (2006) no. 2, pp. 269-286 | Numdam | MR | Zbl
[23] The irregularity of the direct image of some -modules, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 4, pp. 923-932 | DOI | MR | Zbl
[24] Formal structure of direct image of holonomic -modules of exponential type, Manuscripta Math., Volume 124 (2007) no. 3, pp. 299-318 | DOI | MR | Zbl
[25] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl
[26] A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., Volume 65 (1977), pp. 1-155 | MR | Zbl
Cité par Sources :