[Surfaces à courbure de Gauss prescrite dans les espaces-temps de dimension 3 - Application au problème de Minkowski dans l’espace de Minkowski]
Nous étudions l’existence de surfaces à courbure de Gauss constante ou prescrite dans certains espaces-temps lorentziens. Nous montrons en particulier que tout espace-temps (non-élémentaire) globalement hyperbolique spatialement compact maximal à courbure constante positive ou nulle de dimension
We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt, yield several corollaries. For example, they allow to solve the Minkowski problem in
Keywords: Gauss curvature,
Mot clés : courbure de Gauss,
@article{AIF_2011__61_2_511_0, author = {Barbot, Thierry and B\'eguin, Fran\c{c}ois and Zeghib, Abdelghani}, title = {Prescribing {Gauss} curvature of surfaces in 3-dimensional spacetimes {Application} to the {Minkowski} problem in the {Minkowski} space}, journal = {Annales de l'Institut Fourier}, pages = {511--591}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {2}, year = {2011}, doi = {10.5802/aif.2622}, zbl = {1234.53019}, mrnumber = {2895066}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2622/} }
TY - JOUR AU - Barbot, Thierry AU - Béguin, François AU - Zeghib, Abdelghani TI - Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space JO - Annales de l'Institut Fourier PY - 2011 SP - 511 EP - 591 VL - 61 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2622/ DO - 10.5802/aif.2622 LA - en ID - AIF_2011__61_2_511_0 ER -
%0 Journal Article %A Barbot, Thierry %A Béguin, François %A Zeghib, Abdelghani %T Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space %J Annales de l'Institut Fourier %D 2011 %P 511-591 %V 61 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2622/ %R 10.5802/aif.2622 %G en %F AIF_2011__61_2_511_0
Barbot, Thierry; Béguin, François; Zeghib, Abdelghani. Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space. Annales de l'Institut Fourier, Tome 61 (2011) no. 2, pp. 511-591. doi : 10.5802/aif.2622. https://www.numdam.org/articles/10.5802/aif.2622/
[1] Cosmological time versus CMC time I: Flat spacetimes (arXiv: math.DG/0604486)
[2] Cosmological time versus CMC time II: the de Sitter and anti-de Sitter cases (arXiv: math.DG/0701452)
[3] Constant mean curvature foliations of flat space-times, Comm. Anal. Geom., Volume 10 (2002) no. 5, pp. 1125-1150 | MR | Zbl
[4] Constant mean curvature foliations of simplicial flat spacetimes, Comm. Anal. Geom., Volume 13 (2005) no. 5, pp. 963-979 | MR | Zbl
[5] The cosmological time function, Classical Quantum Gravity, Volume 15 (1998) no. 2, pp. 309-322 | DOI | MR | Zbl
[6] Future complete vacuum spacetimes, The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel, 2004, pp. 299-330 | MR | Zbl
[7] On the global evolution problem in
[8] Geometry of the
[9] Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005) no. 2, pp. 123-165 | DOI | MR | Zbl
[10] Causal properties of AdS-isometry groups. II. BTZ multi-black-holes, Adv. Theor. Math. Phys., Volume 12 (2008) no. 6, pp. 1209-1257 | MR | Zbl
[11] Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 3, pp. 245-250 | MR | Zbl
[12] Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on
[13] Group actions on Lorentz spaces, mathematical aspects: a survey, The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel, 2004, pp. 401-439 | MR | Zbl
[14] Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., Volume 87 (1982/83) no. 1, pp. 131-152 | DOI | MR | Zbl
[15] Dirichlet problem for space-like hypersurfaces with prescribed scalar curvature in
[16] Entire spacelike hypersurfaces of prescribed scalar curvature in Minkowski space, Calc. Var. Partial Differential Equations, Volume 26 (2006) no. 2, pp. 245-264 | DOI | MR | Zbl
[17] Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker Inc., New York, 1996 | MR | Zbl
[18] Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc., Volume 198 (2009) no. 926, pp. viii+164 | MR | Zbl
[19] Cosmological time in
[20] Riemannian structure of prescribed Gauss curvature for 2-manifolds, J. Diff. Geom., Volume 5 (1971), pp. 325-332 | MR | Zbl
[21] Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. (4), Volume 30 (1997) no. 2, pp. 205-240 | Numdam | MR | Zbl
[22] Deforming the Minkowskian cone of a closed hyperbolic manifold, Pisa (2005) (Ph. D. Thesis)
[23] Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differential Geom., Volume 69 (2005) no. 3, pp. 441-521 | MR | Zbl
[24] Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992 | MR
[25] Quantum gravity in
[26] Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2), Volume 104 (1976) no. 3, pp. 407-419 | DOI | MR | Zbl
[27] On the regularity of the solution of the
[28] A geometrical background for de Sitter’s world, Amer. Math. Monthly, Volume 50 (1943), pp. 217-228 | DOI | MR | Zbl
[29] Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Gauthier-Villars, 1887-1896
[30] The Dirichlet problem for an equation of given Lorentz-Gaussian curvature, Ukrain. Mat. Zh., Volume 42 (1990) no. 12, pp. 1704-1710 | MR | Zbl
[31] Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, Comm. Math. Phys., Volume 135 (1991) no. 3, pp. 595-613 | DOI | MR | Zbl
[32] Lines in space-times, Comm. Math. Phys., Volume 148 (1992) no. 1, pp. 209-216 | DOI | MR | Zbl
[33] Minkowki type problems for convex hypersurfaces in hyperbolic space (arXiv: math.DG/0602597)
[34] Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 1125-1153 | DOI | MR | Zbl
[35] Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds, J. Reine Angew. Math., Volume 554 (2003), pp. 157-199 | DOI | MR | Zbl
[36] Minkowski type problems for convex hypersurfaces in the sphere, Pure Appl. Math. Q., Volume 3 (2007) no. 2, part 1, pp. 417-449 | MR | Zbl
[37] Domain of dependence, J. Mathematical Phys., Volume 11 (1970), pp. 437-449 | DOI | MR | Zbl
[38] The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature, Trans. Amer. Math. Soc., Volume 350 (1998) no. 12, pp. 4955-4971 | DOI | MR | Zbl
[39] Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2), Volume 156 (2002) no. 2, pp. 655-673 | DOI | MR | Zbl
[40] Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space, J. Reine Angew. Math., Volume 595 (2006), pp. 167-188 | DOI | MR | Zbl
[41] On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampère equation of a certain type, Math. Ann., Volume 262 (1983) no. 2, pp. 245-253 | DOI | MR | Zbl
[42] On hyperbolic surface tessellations and equivariant spacelike polyhedral surfaces in Minkowski space, Ohio State University (2000) (Ph. D. Thesis www.math.ohio-state.edu/~mdavis/eprints.html)
[43] Minimal surfaces and particles in 3-manifolds, Geom. Dedicata, Volume 126 (2007), pp. 187-254 | DOI | MR | Zbl
[44] Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France, Volume 119 (1991) no. 3, pp. 307-325 | Numdam | MR | Zbl
[45] Problèmes de Monge-Ampère, courbes holomorphes et laminations, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 496-534 | DOI | MR | Zbl
[46] Foliations and laminations on hyperbolic surfaces, Topology, Volume 22 (1983) no. 2, pp. 119-135 | DOI | MR | Zbl
[47] Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space, Arch. Math. (Basel), Volume 64 (1995) no. 6, pp. 534-551 | MR | Zbl
[48] Global affine differential geometry of hypersurfaces, de Gruyter Expositions in Mathematics, 11, Walter de Gruyter & Co., Berlin, 1993 | MR | Zbl
[49] Constant curvature foliations in asymptotically hyperbolic spaces (arXiv: 0710.2298)
[50] The topology and geometry of embedded surfaces of constant mean curvature, J. Differential Geom., Volume 27 (1988) no. 3, pp. 539-552 | MR | Zbl
[51] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI | MR | Zbl
[52] Reduction of the Einstein equations in
[53] The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., Volume 6 (1953), pp. 337-394 | DOI | MR | Zbl
[54] Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983 (With applications to relativity) | MR | Zbl
[55] Flat conformal structures and the classification of de Sitter manifolds, Comm. Anal. Geom., Volume 7 (1999) no. 2, pp. 325-345 | MR | Zbl
[56] Surfaces convexes dans des espaces lorentziens à courbure constante, Comm. Anal. Geom., Volume 4 (1996) no. 1-2, pp. 285-331 | MR | Zbl
[57] The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z., Volume 242 (2002) no. 1, pp. 159-181 | DOI | MR | Zbl
[58] A generalized Minkowski problem with Dirichlet boundary condition, Trans. Amer. Math. Soc., Volume 355 (2003) no. 2, p. 655-663 (electronic) | DOI | MR | Zbl
[59] Moduli of flat conformal structures of hyperbolic type (arXiv:0804.0744)
[60] Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, V, Invent. Math., Volume 66 (1982) no. 1, pp. 39-56 | DOI | MR | Zbl
[61] The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space, Calc. Var. Partial Differential Equations, Volume 18 (2003) no. 3, pp. 307-316 | DOI | MR | Zbl
Cité par Sources :