Le cut locus d’une variété Finslerienne peut être non-triangulable, mais une description locale à tous les points sauf pour un ensemble de dimension de Hausdorff est bien connu. Nous donnons une nouvelle description de la structure de ces ensembles, avec des applications directes pour les ensembles des points singuliers de certaines équations de Hamilton-Jacobi. Nous donnons une classification de tous les points sauf pour un ensemble de dimension de Hausdorff .
We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdorff dimension is well known. We go further in this direction by giving a classification of all points up to a set of Hausdorff dimension .
Keywords: Cut locus, Hamilton-Jacobi equations, focal points
Mot clés : cut locus, équations de Hamilton-Jacobi, points focaux
@article{AIF_2011__61_4_1655_0, author = {Ardoy, Pablo Angulo and Guijarro, Luis}, title = {Cut and singular loci up to codimension 3}, journal = {Annales de l'Institut Fourier}, pages = {1655--1681}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2655}, zbl = {1242.35095}, mrnumber = {2951748}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2655/} }
TY - JOUR AU - Ardoy, Pablo Angulo AU - Guijarro, Luis TI - Cut and singular loci up to codimension 3 JO - Annales de l'Institut Fourier PY - 2011 SP - 1655 EP - 1681 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2655/ DO - 10.5802/aif.2655 LA - en ID - AIF_2011__61_4_1655_0 ER -
%0 Journal Article %A Ardoy, Pablo Angulo %A Guijarro, Luis %T Cut and singular loci up to codimension 3 %J Annales de l'Institut Fourier %D 2011 %P 1655-1681 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2655/ %R 10.5802/aif.2655 %G en %F AIF_2011__61_4_1655_0
Ardoy, Pablo Angulo; Guijarro, Luis. Cut and singular loci up to codimension 3. Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1655-1681. doi : 10.5802/aif.2655. http://archive.numdam.org/articles/10.5802/aif.2655/
[1] On the singularities of convex functions, Comm. Pure Appl. Math., Volume 76 (1992), pp. 421-435 | MR | Zbl
[2] Balanced split sets and Hamilton Jacobi equations http://arxiv.org/abs/0807.2046, (2008-2009) (to appear in Calc. Var. Partial Differential Equations)
[3] Some consequences of the nature of the distance function on the cut locus in a riemannian manifold, J. London Math. Soc. (2), Volume 56 (1997) no. 2, pp. 369-383 | DOI | MR | Zbl
[4] The structure of the cut locus in dimension less than or equal to six, Compositio Math., Volume 37 (1978) no. 1, pp. 103-119 | Numdam | MR | Zbl
[5] Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser Boston, Boston, 2004 | MR | Zbl
[6] Geometric measure theory, Progress in Nonlinear Differential Equations and Their Applications, 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl
[7] Scattering of Geodesic Fields, I, Annals of Mathematics, Volume 108 (1978) no. 2, pp. 347-372 | DOI | MR | Zbl
[8] Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., Volume 299 (1987), pp. 559-572 | DOI | MR | Zbl
[9] The dimension of a cut locus on a smooth Riemannian manifold, Tohoku Math. J. (2), Volume 50 (1998) no. 4, pp. 571-575 | DOI | MR | Zbl
[10] The Lipschitz continuity of the distance function to the cut locus, Transactions of the A.M.S., Volume 353 (2000) no. 1, pp. 21-40 | DOI | MR | Zbl
[11] The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math., Volume 58 (2005) no. 1, pp. 85-146 | DOI | MR | Zbl
[12] Generalized Solutions of Hamilton-Jacobi Equations, 69, Pitman, Boston, MA, 1982 | MR | Zbl
[13] Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds, Appl. Math. Optim., Volume 47 (2003) no. 2, pp. 1-25 | MR | Zbl
[14] Regularity And Variationality Of Solutions To Hamilton-Jacobi Equations. Part I: Regularity (2nd Edition), ESAIM Control Optim. Calc. Var., Volume 13 (2007) no. 2, pp. 413-417 | DOI | Numdam | MR | Zbl
[15] Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, Princeton, N.J., 1963 | MR | Zbl
[16] The conjugate locus of a Riemannian manifold, Amer. J. of Math., Volume 87 (1965), pp. 573-604 | DOI | MR | Zbl
Cité par Sources :