Let be the Thue–Morse sequence on defined by , and for . Let be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number is equal to .
Soit la suite de Thue–Morse définie sur par , et pour . Soit un entier rationnel. Nous démontrons que l’exposant d’irrationalité du nombre de Thue–Morse–Mahler est égal à .
Keywords: Irrationality measure, Thue–Morse sequence, Padé approximant
Mot clés : mesure d’irrationalité, suite de Thue–Morse, approximant de Padé
@article{AIF_2011__61_5_2065_0, author = {Bugeaud, Yann}, title = {On the rational approximation to the {Thue{\textendash}Morse{\textendash}Mahler} numbers}, journal = {Annales de l'Institut Fourier}, pages = {2065--2076}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {5}, year = {2011}, doi = {10.5802/aif.2666}, zbl = {1271.11074}, mrnumber = {2961848}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2666/} }
TY - JOUR AU - Bugeaud, Yann TI - On the rational approximation to the Thue–Morse–Mahler numbers JO - Annales de l'Institut Fourier PY - 2011 SP - 2065 EP - 2076 VL - 61 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2666/ DO - 10.5802/aif.2666 LA - en ID - AIF_2011__61_5_2065_0 ER -
%0 Journal Article %A Bugeaud, Yann %T On the rational approximation to the Thue–Morse–Mahler numbers %J Annales de l'Institut Fourier %D 2011 %P 2065-2076 %V 61 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2666/ %R 10.5802/aif.2666 %G en %F AIF_2011__61_5_2065_0
Bugeaud, Yann. On the rational approximation to the Thue–Morse–Mahler numbers. Annales de l'Institut Fourier, Volume 61 (2011) no. 5, pp. 2065-2076. doi : 10.5802/aif.2666. http://archive.numdam.org/articles/10.5802/aif.2666/
[1] On the expansion of some exponential periods in an integer base, Math. Ann., Volume 346 (2010) no. 1, pp. 107-116 | DOI | MR
[2] Diophantine properties of real numbers generated by finite automata, Compos. Math., Volume 142 (2006) no. 6, pp. 1351-1372 | DOI | MR | Zbl
[3] Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Philos. Soc., Volume 147 (2009) no. 3, pp. 659-678 | DOI | MR | Zbl
[4] A remarkable class of continued fractions, Proc. Amer. Math. Soc., Volume 65 (1977) no. 2, pp. 194-198 | DOI | MR | Zbl
[5] Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 1, pp. 1-27 | DOI | Numdam | MR | Zbl
[6] Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003 | MR | Zbl
[7] Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory, Volume 37 (1991) no. 2, pp. 231-241 | DOI | MR | Zbl
[8] Padé approximants, Encyclopedia of Mathematics and its Applications, 59, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[9] Initial powers of Sturmian sequences, Acta Arith., Volume 122 (2006) no. 4, pp. 315-347 | DOI | MR | Zbl
[10] Padé-type approximation and general orthogonal polynomials, International Series of Numerical Mathematics, 50, Birkhäuser Verlag, Basel, 1980 | MR | Zbl
[11] Diophantine approximation and Cantor sets, Math. Ann., Volume 341 (2008) no. 3, pp. 677-684 | DOI | MR | Zbl
[12] Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation (Preprint)
[13] Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer -adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math., Volume 318 (1980), pp. 110-119 | DOI | MR | Zbl
[14] Transcendance du nombre de Thue-Morse, C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977) no. 4, p. A157-A160 | MR | Zbl
[15] On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann., Volume 338 (2007) no. 1, pp. 97-118 | DOI | MR | Zbl
[16] Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann., Volume 101 (1929) no. 1, pp. 342-366 | DOI | MR
[17] Simple continued fractions for some irrational numbers, J. Number Theory, Volume 11 (1979) no. 2, pp. 209-217 | DOI | MR | Zbl
[18] The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., Volume 50 (2003) no. 8, pp. 912-915 | MR | Zbl
Cited by Sources: