Donaldson proved that if a polarized manifold has constant scalar curvature Kähler metrics in and its automorphism group is discrete, is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case where is not discrete.
Donaldson a prouvé que, si une variété polarisée admet une métrique kählérienne à courbure scalaire constante dans , et si son groupe d’automorphismes est discret, alors est asymptotiquement stable au sens de Chow. Dans cet article, nous allons montrer un exemple qui implique que le résultat ci-dessus ne s’étend pas au cas où n’est pas discret.
Keywords: asymptotic Chow stability, Kähler metric of constant scalar curvature, toric Fano manifold, Futaki invariant
Mot clés : stabilité asymptotique au sens de Chow, métrique kählérienne à courbure scalaire contsante, variété de Fano torique, invariant de Futaki
@article{AIF_2012__62_4_1265_0, author = {Ono, Hajime and Sano, Yuji and Yotsutani, Naoto}, title = {An example of an asymptotically {Chow} unstable manifold with constant scalar curvature}, journal = {Annales de l'Institut Fourier}, pages = {1265--1287}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {4}, year = {2012}, doi = {10.5802/aif.2722}, zbl = {1255.53057}, mrnumber = {3025743}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2722/} }
TY - JOUR AU - Ono, Hajime AU - Sano, Yuji AU - Yotsutani, Naoto TI - An example of an asymptotically Chow unstable manifold with constant scalar curvature JO - Annales de l'Institut Fourier PY - 2012 SP - 1265 EP - 1287 VL - 62 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2722/ DO - 10.5802/aif.2722 LA - en ID - AIF_2012__62_4_1265_0 ER -
%0 Journal Article %A Ono, Hajime %A Sano, Yuji %A Yotsutani, Naoto %T An example of an asymptotically Chow unstable manifold with constant scalar curvature %J Annales de l'Institut Fourier %D 2012 %P 1265-1287 %V 62 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2722/ %R 10.5802/aif.2722 %G en %F AIF_2012__62_4_1265_0
Ono, Hajime; Sano, Yuji; Yotsutani, Naoto. An example of an asymptotically Chow unstable manifold with constant scalar curvature. Annales de l'Institut Fourier, Volume 62 (2012) no. 4, pp. 1265-1287. doi : 10.5802/aif.2722. http://archive.numdam.org/articles/10.5802/aif.2722/
[1] Moment maps, scalar curvature and quantization of Kähler manifolds, Comm. Math. Phys., Volume 246 (2004) no. 3, pp. 543-559 | DOI | MR | Zbl
[2] Einstein-Kähler metrics on symmetric toric Fano manifolds, J. Reine Angew. Math., Volume 512 (1999), pp. 225-236 | DOI | MR | Zbl
[3] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522 http://projecteuclid.org/getRecord?id=euclid.jdg/1090349449 | MR | Zbl
[4] Scalar curvature and stability of toric varieties, J. Differential Geom., Volume 62 (2002) no. 2, pp. 289-349 http://projecteuclid.org/getRecord?id=euclid.jdg/1090950195 | MR | Zbl
[5] An obstruction to the existence of Einstein Kähler metrics, Invent. Math., Volume 73 (1983) no. 3, pp. 437-443 | DOI | MR | Zbl
[6] Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, 1314, Springer-Verlag, Berlin, 1988 | MR | Zbl
[7] Asymptotic Chow semi-stability and integral invariants, Internat. J. Math., Volume 15 (2004) no. 9, pp. 967-979 | DOI | MR | Zbl
[8] Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom., Volume 21 (1985) no. 1, pp. 135-142 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439469 | MR | Zbl
[9] Hilbert series and obstructions to asymptotic semistability, Adv. Math., Volume 226 (2011) no. 1, pp. 254-284 | DOI | MR | Zbl
[10] An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math., Volume 41 (2004) no. 2, pp. 463-472 http://projecteuclid.org/getRecord?id=euclid.ojm/1153493522 | MR | Zbl
[11] An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I, Invent. Math., Volume 159 (2005) no. 2, pp. 225-243 | DOI | MR | Zbl
[12] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005 | MR | Zbl
[13] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994 | MR | Zbl
[14] Examples of non-symmetric Kähler-Einstein toric Fano manifolds (http://arxiv.org/abs/0905.2054)
[15] Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988 (An introduction to the theory of toric varieties, Translated from the Japanese) | MR | Zbl
[16] A necessary condition for Chow semistability of polarized toric manifolds, J. Math. Soc., Japan, Volume 63 (2011) no. 4, pp. 1377-1389 | DOI | MR | Zbl
[17] Kähler-Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997) no. 1, pp. 1-37 | DOI | MR | Zbl
[18] Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., Volume 188 (2004) no. 1, pp. 87-103 | DOI | MR | Zbl
[19] Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A., Volume 74 (1977) no. 5, pp. 1798-1799 | DOI | MR | Zbl
[20] Perspectives on geometric analysis, Surveys in differential geometry. Vol. X (Surv. Differ. Geom.), Volume 10, Int. Press, Somerville, MA, 2006, pp. 275-379 | MR | Zbl
Cited by Sources: