Nous décrivons l’anneau tautologique de l’espace des modules des courbes stables de genre un de type compact avec
We describe the tautological ring of the moduli space of stable
Keywords: Moduli of curves, tautological rings
Mot clés : anneau tautologique, espace de modules des courbes
@article{AIF_2011__61_7_2751_0, author = {Tavakol, Mehdi}, title = {The tautological ring of $M_{1,n}^{ct}$}, journal = {Annales de l'Institut Fourier}, pages = {2751--2779}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {7}, year = {2011}, doi = {10.5802/aif.2793}, mrnumber = {3112507}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2793/} }
TY - JOUR AU - Tavakol, Mehdi TI - The tautological ring of $M_{1,n}^{ct}$ JO - Annales de l'Institut Fourier PY - 2011 SP - 2751 EP - 2779 VL - 61 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2793/ DO - 10.5802/aif.2793 LA - en ID - AIF_2011__61_7_2751_0 ER -
Tavakol, Mehdi. The tautological ring of $M_{1,n}^{ct}$. Annales de l'Institut Fourier, Tome 61 (2011) no. 7, pp. 2751-2779. doi : 10.5802/aif.2793. https://www.numdam.org/articles/10.5802/aif.2793/
[1] Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. (1998) no. 88, p. 97-127 (1999) | EuDML | Numdam | MR | Zbl
[2] On the projectivity of the moduli spaces of curves, J. Reine Angew. Math., Volume 443 (1993), pp. 11-20 | DOI | EuDML | MR | Zbl
[3] A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties (Aspects Math., E33), Vieweg, Braunschweig, 1999, pp. 109-129 | MR | Zbl
[4] Hodge integrals, tautological classes and Gromov-Witten theory, Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000) (2001) no. 1232, pp. 78-87 | MR
[5] A remark on a conjecture of Hain and Looijenga (2008) (Arxiv preprint arXiv:0812.3631) | Numdam | Zbl
[6] Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J., Volume 48 (2000), pp. 215-252 (With an appendix by Don Zagier, Dedicated to William Fulton on the occasion of his 60th birthday) | DOI | MR | Zbl
[7] Hodge integrals, partition matrices, and the
[8] Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Volume 7 (2005) no. 1, pp. 13-49 | DOI | EuDML | MR | Zbl
[9] A compactification of configuration spaces, Ann. of Math. (2), Volume 139 (1994) no. 1, pp. 183-225 | DOI | MR | Zbl
[10] Intersection theory on
[11] Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Volume 51 (2003) no. 1, pp. 93-109 | DOI | MR | Zbl
[12] Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Volume 130 (2005) no. 1, pp. 1-37 | DOI | MR | Zbl
[13] An interesting 0-cycle, Duke Math. J., Volume 119 (2003) no. 2, pp. 261-313 | DOI | MR | Zbl
[14] Mapping class groups and moduli spaces of curves, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 97-142 | MR | Zbl
[15] On the decomposition of Brauer’s centralizer algebras, J. Algebra, Volume 121 (1989) no. 2, pp. 409-445 | DOI | MR | Zbl
[16] Intersection theory of moduli space of stable
[17] A geometric construction of Getzler’s elliptic relation, Math. Ann., Volume 313 (1999) no. 4, pp. 715-729 | DOI | MR | Zbl
- The generalized Franchetta conjecture for some hyper-Kähler varieties. II, Journal de l'École Polytechnique – Mathématiques, Volume 8 (2021), pp. 1065-1097 | DOI:10.5802/jep.166 | Zbl:1466.14008
- The connection between
and , Journal of Pure and Applied Algebra, Volume 222 (2018) no. 6, pp. 1306-1315 | DOI:10.1016/j.jpaa.2017.06.019 | Zbl:1420.14056 - Tautological classes on the moduli space of hyperelliptic curves with rational tails, Journal of Pure and Applied Algebra, Volume 222 (2018) no. 8, pp. 2040-2062 | DOI:10.1016/j.jpaa.2017.08.019 | Zbl:1420.14057
- The Chow ring of the moduli space of curves of genus zero, Journal of Pure and Applied Algebra, Volume 221 (2017) no. 4, pp. 757-772 | DOI:10.1016/j.jpaa.2016.07.016 | Zbl:1388.14084
- Poincaré Duality of Wonderful Compactifications and Tautological Rings, International Mathematics Research Notices, Volume 2016 (2016) no. 17, p. 5187 | DOI:10.1093/imrn/rnv296
- The Tautological Ring of the Moduli Space M2,nrt, International Mathematics Research Notices, Volume 2014 (2014) no. 24, p. 6661 | DOI:10.1093/imrn/rnt178
- The Gorenstein conjecture fails for the tautological ring of
, Inventiones Mathematicae, Volume 196 (2014) no. 1, pp. 139-161 | DOI:10.1007/s00222-013-0466-z | Zbl:1295.14030 - A remark on a conjecture of Hain and Looijenga, Annales de l'Institut Fourier, Volume 61 (2011) no. 7, pp. 2745-2750 | DOI:10.5802/aif.2792 | Zbl:1278.14037
- The tautological ring of the moduli space M_2,n^rt, arXiv (2011) | DOI:10.48550/arxiv.1101.5242 | arXiv:1101.5242
- Tautological and non-tautological cohomology of the moduli space of curves, arXiv (2011) | DOI:10.48550/arxiv.1101.5489 | arXiv:1101.5489
- The Chow ring of the moduli space of curves of genus zero, arXiv (2011) | DOI:10.48550/arxiv.1101.0847 | arXiv:1101.0847
- A remark on a conjecture of Hain and Looijenga, arXiv (2008) | DOI:10.48550/arxiv.0812.3631 | arXiv:0812.3631
Cité par 12 documents. Sources : Crossref, NASA ADS, zbMATH