Nous décrivons l’anneau tautologique de l’espace des modules des courbes stables de genre un de type compact avec
We describe the tautological ring of the moduli space of stable
Keywords: Moduli of curves, tautological rings
Mot clés : anneau tautologique, espace de modules des courbes
@article{AIF_2011__61_7_2751_0, author = {Tavakol, Mehdi}, title = {The tautological ring of $M_{1,n}^{ct}$}, journal = {Annales de l'Institut Fourier}, pages = {2751--2779}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {7}, year = {2011}, doi = {10.5802/aif.2793}, mrnumber = {3112507}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2793/} }
TY - JOUR AU - Tavakol, Mehdi TI - The tautological ring of $M_{1,n}^{ct}$ JO - Annales de l'Institut Fourier PY - 2011 SP - 2751 EP - 2779 VL - 61 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2793/ DO - 10.5802/aif.2793 LA - en ID - AIF_2011__61_7_2751_0 ER -
Tavakol, Mehdi. The tautological ring of $M_{1,n}^{ct}$. Annales de l'Institut Fourier, Tome 61 (2011) no. 7, pp. 2751-2779. doi : 10.5802/aif.2793. https://www.numdam.org/articles/10.5802/aif.2793/
[1] Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. (1998) no. 88, p. 97-127 (1999) | EuDML | Numdam | MR | Zbl
[2] On the projectivity of the moduli spaces of curves, J. Reine Angew. Math., Volume 443 (1993), pp. 11-20 | DOI | EuDML | MR | Zbl
[3] A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties (Aspects Math., E33), Vieweg, Braunschweig, 1999, pp. 109-129 | MR | Zbl
[4] Hodge integrals, tautological classes and Gromov-Witten theory, Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000) (2001) no. 1232, pp. 78-87 | MR
[5] A remark on a conjecture of Hain and Looijenga (2008) (Arxiv preprint arXiv:0812.3631) | Numdam | Zbl
[6] Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J., Volume 48 (2000), pp. 215-252 (With an appendix by Don Zagier, Dedicated to William Fulton on the occasion of his 60th birthday) | DOI | MR | Zbl
[7] Hodge integrals, partition matrices, and the
[8] Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Volume 7 (2005) no. 1, pp. 13-49 | DOI | EuDML | MR | Zbl
[9] A compactification of configuration spaces, Ann. of Math. (2), Volume 139 (1994) no. 1, pp. 183-225 | DOI | MR | Zbl
[10] Intersection theory on
[11] Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Volume 51 (2003) no. 1, pp. 93-109 | DOI | MR | Zbl
[12] Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Volume 130 (2005) no. 1, pp. 1-37 | DOI | MR | Zbl
[13] An interesting 0-cycle, Duke Math. J., Volume 119 (2003) no. 2, pp. 261-313 | DOI | MR | Zbl
[14] Mapping class groups and moduli spaces of curves, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 97-142 | MR | Zbl
[15] On the decomposition of Brauer’s centralizer algebras, J. Algebra, Volume 121 (1989) no. 2, pp. 409-445 | DOI | MR | Zbl
[16] Intersection theory of moduli space of stable
[17] A geometric construction of Getzler’s elliptic relation, Math. Ann., Volume 313 (1999) no. 4, pp. 715-729 | DOI | MR | Zbl
Cité par Sources :