On définit la stratification de Gauss-Manin d’un fibré stratifié relativement à un morphisme lisse et on l’utilise pour étudier la suite d’homotopie des groupes fondamentaux stratifiés.
We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.
Classification : 14F05, 14F35, 14L17
Mots clés : Fibré stratifié, Stratification de Gauss-Manin, Suite d’homotopie
@article{AIF_2013__63_6_2267_0, author = {Ph\`ung, H\^o Hai}, title = {Gauss-Manin stratification and stratified fundamental group schemes}, journal = {Annales de l'Institut Fourier}, pages = {2267--2285}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {6}, year = {2013}, doi = {10.5802/aif.2829}, mrnumber = {3237447}, zbl = {1298.14022}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2829/} }
TY - JOUR AU - Phùng, Hô Hai TI - Gauss-Manin stratification and stratified fundamental group schemes JO - Annales de l'Institut Fourier PY - 2013 DA - 2013/// SP - 2267 EP - 2285 VL - 63 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2829/ UR - https://www.ams.org/mathscinet-getitem?mr=3237447 UR - https://zbmath.org/?q=an%3A1298.14022 UR - https://doi.org/10.5802/aif.2829 DO - 10.5802/aif.2829 LA - en ID - AIF_2013__63_6_2267_0 ER -
Phùng, Hô Hai. Gauss-Manin stratification and stratified fundamental group schemes. Annales de l'Institut Fourier, Tome 63 (2013) no. 6, pp. 2267-2285. doi : 10.5802/aif.2829. http://archive.numdam.org/articles/10.5802/aif.2829/
[1] Notes on crystalline cohomology, Princeton Univ. Press, 1978 | MR 491705 | Zbl 0383.14010
[2] Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties (Lectures Notes in Mathematics), Volume 900, Springer-Verlag, 1981, pp. 101-228 | Zbl 0477.14004
[3] Simply connected projective manifolds incharacteristic have no nontrivial stratified bundles, Inventiones Mathematicae, Volume 181 (2010), pp. 449-465 | Article | MR 2660450 | Zbl 1203.14029
[4] The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not., Art. ID 93978 (2006), pp. 1-35 | MR 2211153 | Zbl 1105.14012
[5] On Nori’s Fundamental Group Scheme, Progress in Mathematics, Volume 265 (2007), pp. 377-398 | Article | MR 2402410 | Zbl 1137.14035
[6] Flat vector bundles, Annali della Scuola Normale Superiore di Pisa (1975) no. 1, pp. 1-31 | Numdam | MR 382271 | Zbl 0322.14009
[7] Éléments de Géométrie Algébrique III, (EGA 3), 17, Publication Math. IHES, 1963
[8] Éléments de Géométrie Algébrique IV (EGA 4), 32, Publication Math. IHES, 1967
[9] Algebraic geometry, Springer, 1977 | MR 463157 | Zbl 0531.14001
[10] Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. IHES, Volume 39 (1970), pp. 175-232 | Article | EuDML 103909 | Numdam | MR 291177 | Zbl 0221.14007
[11] Cohomology of the infinitesimal site, Annales scientifiques E.N.S., Volume 8 (1975) no. 3, pp. 295-318 | EuDML 81958 | Numdam | MR 422280 | Zbl 0337.14018
[12] Fundamental group schemes for stratified sheaves, Journal of Algebra, Volume 317 (2007), pp. 691-713 | Article | MR 2362937 | Zbl 1130.14032
[13] The behaviour of the differential Galois group on the generic and special fibres: A Tannakian approach, J. reine angew. Math., Volume 637 (2009), pp. 63-98 | MR 2599082 | Zbl 1242.12005
Cité par Sources :