Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 19-70.

We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.

Nous démontrons en dimension un la stabilité dans l’espace d’énergie des sommes de solitons de l’équation de Gross-Pitaevskii, dont les vitesses sont non nulles et deux-à-deux distinctes, et dont les positions initiales sont suffisamment espacées et ordonnées selon les vitesses des solitons.

DOI: 10.5802/aif.2838
Classification: 35B35, 35Q51, 35Q55
Keywords: Gross-Pitaevskii equation, sums of solitons, stability
Mot clés : Équation de Gross-Pitaevskii, sommes de solitons, stabilité
Béthuel, Fabrice 1; Gravejat, Philippe 2; Smets, Didier 1

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France.
2 Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.
@article{AIF_2014__64_1_19_0,
     author = {B\'ethuel, Fabrice and Gravejat, Philippe and Smets, Didier},
     title = {Stability in the energy space for chains of~solitons of the one-dimensional {Gross-Pitaevskii} equation},
     journal = {Annales de l'Institut Fourier},
     pages = {19--70},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.5802/aif.2838},
     zbl = {06387265},
     mrnumber = {3330540},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2838/}
}
TY  - JOUR
AU  - Béthuel, Fabrice
AU  - Gravejat, Philippe
AU  - Smets, Didier
TI  - Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 19
EP  - 70
VL  - 64
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2838/
DO  - 10.5802/aif.2838
LA  - en
ID  - AIF_2014__64_1_19_0
ER  - 
%0 Journal Article
%A Béthuel, Fabrice
%A Gravejat, Philippe
%A Smets, Didier
%T Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
%J Annales de l'Institut Fourier
%D 2014
%P 19-70
%V 64
%N 1
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2838/
%R 10.5802/aif.2838
%G en
%F AIF_2014__64_1_19_0
Béthuel, Fabrice; Gravejat, Philippe; Smets, Didier. Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 19-70. doi : 10.5802/aif.2838. http://archive.numdam.org/articles/10.5802/aif.2838/

[1] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Farina, A.; Saut, J.-C. Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations (Contemp. Math.), Volume 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55-104 | MR | Zbl

[2] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J, Volume 57 (2008) no. 6, pp. 2611-2642 | DOI | MR | Zbl

[3] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not., Volume 2009 (2009) no. 14, pp. 2700-2748 | MR | Zbl

[4] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II, Comm. Partial Differential Equations, Volume 35 (2010) no. 1, pp. 113-164 | DOI | MR | Zbl

[5] Chiron, D. Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Volume 25 (2012) no. 3, pp. 813-850 | DOI | MR | Zbl

[6] Chiron, D.; Rousset, F. The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 42 (2010) no. 1, pp. 64-96 | DOI | MR | Zbl

[7] Dunford, N.; Schwartz, J.T. Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space, Pure and Applied Mathematics, 7, Interscience Publishers, John Wiley and Sons, New York-London-Sydney, 1963 (With the assistance of W.G. Bade and R.G. Bartle) | MR | Zbl

[8] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2007 (Translated by A.G. Reyman) | MR | Zbl

[9] Gallo, C. Schrödinger group on Zhidkov spaces, Adv. Differential Equations, Volume 9 (2004) no. 5-6, pp. 509-538 | MR | Zbl

[10] Gérard, P. The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | Numdam | Zbl

[11] Gérard, P.; Zhang, Z. Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., Volume 91 (2009) no. 2, pp. 178-210 | DOI | MR | Zbl

[12] Grillakis, M.; Shatah, J.; Strauss, W.A. Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., Volume 74 (1987) no. 1, pp. 160-197 | DOI | MR | Zbl

[13] Lin, Z. Stability and instability of traveling solitonic bubbles, Adv. Differential Equations, Volume 7 (2002) no. 8, pp. 897-918 | MR | Zbl

[14] Martel, Y.; Merle, F. Stability of two soliton collision for nonintegrable gKdV equations, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 39-79 | DOI | MR | Zbl

[15] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011) no. 3, pp. 563-648 | DOI | MR | Zbl

[16] Martel, Y.; Merle, F.; Tsai, T.-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | DOI | MR | Zbl

[17] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006) no. 3, pp. 405-466 | DOI | MR | Zbl

[18] Miura, R.M. The Korteweg- de Vries equation: a survey of results, SIAM Rev., Volume 18 (1976) no. 3, pp. 412-459 | DOI | MR | Zbl

[19] Tartousi, H.M. (PhD thesis In preparation)

[20] Vartanian, A.H. Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua, Math. Phys. Anal. Geom., Volume 5 (2002) no. 4, pp. 319-413 | DOI | MR | Zbl

[21] Zakharov, V.E.; Shabat, A.B. Interaction between solitons in a stable medium, Sov. Phys. JETP, Volume 37 (1973), pp. 823-828

[22] Zhidkov, P.E. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, Lecture Notes in Mathematics, 1756, Springer-Verlag, Berlin, 2001 | MR | Zbl

Cited by Sources: