Transcendental holomorphic Morse inequalities aim at characterizing the positivity of transcendental cohomology classes of type . In this paper, we prove a weak version of Demailly’s conjecture on transcendental Morse inequalities on compact Kähler manifolds. And as a consequence, we partially improve a result of Boucksom-Demailly-Paun-Peternell.
Les inégalités de Morse holomorphes transcendantes caractérisent la positivité des classes cohomologiques transcendantes de type . Dans ce papier, nous démontrons une version faible d’une conjecture de Demailly sur les inégalités de Morse holomorphes transcendantes sur les variétés kähleriennes. En conséquence, nous améliorons partiellement un résultat de Boucksom-Demailly-Paun-Peternell.
Keywords: Transcendental holomorphic Morse inequalities, positivity of cohomology classes, Kähler manifolds
Mot clés : Inégalités de Morse holomorphes transcendantes, positivité des classes cohomologiques, variétés kähleriennes
@article{AIF_2015__65_3_1367_0, author = {Xiao, Jian}, title = {Weak transcendental holomorphic {Morse} inequalities on compact {K\"ahler} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1367--1379}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {3}, year = {2015}, doi = {10.5802/aif.2959}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2959/} }
TY - JOUR AU - Xiao, Jian TI - Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds JO - Annales de l'Institut Fourier PY - 2015 SP - 1367 EP - 1379 VL - 65 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2959/ DO - 10.5802/aif.2959 LA - en ID - AIF_2015__65_3_1367_0 ER -
%0 Journal Article %A Xiao, Jian %T Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds %J Annales de l'Institut Fourier %D 2015 %P 1367-1379 %V 65 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2959/ %R 10.5802/aif.2959 %G en %F AIF_2015__65_3_1367_0
Xiao, Jian. Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds. Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 1367-1379. doi : 10.5802/aif.2959. http://archive.numdam.org/articles/10.5802/aif.2959/
[1] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl
[2] On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1, pp. vii, xi, 287-302 | DOI | Numdam | MR | Zbl
[3] A Nakai-Moishezon criterion for non-Kähler surfaces, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 5, pp. 1533-1538 | DOI | Numdam | MR | Zbl
[4] The Kähler rank of compact complex manifolds (http://arxiv.org/abs/1308.2043)
[5] Champs magnétiques et inégalités de Morse pour la -cohomologie, Ann. Inst. Fourier (Grenoble), Volume 35 (1985) no. 4, pp. 189-229 | DOI | Numdam | MR | Zbl
[6] Holomorphic Morse inequalities, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) (Proc. Sympos. Pure Math.), Volume 52, Amer. Math. Soc., Providence, RI, 1991, pp. 93-114 | MR | Zbl
[7] A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993) no. 2, pp. 323-374 http://projecteuclid.org/euclid.jdg/1214453680 | MR | Zbl
[8] Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, Special Issue: In memory of Eckart Viehweg, pp. 1165-1207 | DOI | MR
[9] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | MR | Zbl
[10] Pluripotential estimates on compact Hermitian manifolds, Advances in geometric analysis (Adv. Lect. Math. (ALM)), Volume 21, Int. Press, Somerville, MA, 2012, pp. 69-86 | MR
[11] Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977) no. 5, p. A387-A390 | MR | Zbl
[12] Le cône kählérien d’une surface, J. Math. Pures Appl. (9), Volume 78 (1999) no. 3, pp. 249-263 | DOI | MR | Zbl
[13] Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1, pp. vii, x, 263-285 | DOI | Numdam | MR | Zbl
[14] An Observation Relative to a Paper by J. Xiao (http://arxiv.org/abs/1405.2518)
[15] Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Workshop Bonn 1984 (Bonn, 1984) (Lecture Notes in Math.), Volume 1111, Springer, Berlin, 1985, pp. 169-192 | DOI | MR | Zbl
[16] Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 | DOI | MR | Zbl
[17] The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., Volume 23 (2010) no. 4, pp. 1187-1195 | DOI | MR | Zbl
Cited by Sources: