Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds
[Inégalités de Morse holomorphes transcendantes faibles sur les variétés kähleriennes]
Annales de l'Institut Fourier, Tome 65 (2015) no. 3, pp. 1367-1379.

Les inégalités de Morse holomorphes transcendantes caractérisent la positivité des classes cohomologiques transcendantes de type (1,1). Dans ce papier, nous démontrons une version faible d’une conjecture de Demailly sur les inégalités de Morse holomorphes transcendantes sur les variétés kähleriennes. En conséquence, nous améliorons partiellement un résultat de Boucksom-Demailly-Paun-Peternell.

Transcendental holomorphic Morse inequalities aim at characterizing the positivity of transcendental cohomology classes of type (1,1). In this paper, we prove a weak version of Demailly’s conjecture on transcendental Morse inequalities on compact Kähler manifolds. And as a consequence, we partially improve a result of Boucksom-Demailly-Paun-Peternell.

DOI : https://doi.org/10.5802/aif.2959
Classification : 32C30,  32Q15
Mots clés : Inégalités de Morse holomorphes transcendantes, positivité des classes cohomologiques, variétés kähleriennes
@article{AIF_2015__65_3_1367_0,
     author = {Xiao, Jian},
     title = {Weak transcendental holomorphic {Morse} inequalities on compact {K\"ahler} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1367--1379},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {3},
     year = {2015},
     doi = {10.5802/aif.2959},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2959/}
}
TY  - JOUR
AU  - Xiao, Jian
TI  - Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 1367
EP  - 1379
VL  - 65
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2959/
UR  - https://doi.org/10.5802/aif.2959
DO  - 10.5802/aif.2959
LA  - en
ID  - AIF_2015__65_3_1367_0
ER  - 
Xiao, Jian. Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds. Annales de l'Institut Fourier, Tome 65 (2015) no. 3, pp. 1367-1379. doi : 10.5802/aif.2959. http://archive.numdam.org/articles/10.5802/aif.2959/

[1] Boucksom, Sébastien; Demailly, Jean-Pierre; Păun, Mihai; Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 | Article | MR 3019449 | Zbl 1267.32017

[2] Buchdahl, Nicholas On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1, pp. vii, xi, 287-302 | Article | Numdam | MR 1688136 | Zbl 0926.32025

[3] Buchdahl, Nicholas A Nakai-Moishezon criterion for non-Kähler surfaces, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 5, pp. 1533-1538 | Article | Numdam | MR 1800126 | Zbl 0964.32014

[4] Chiose, I. The Kähler rank of compact complex manifolds (http://arxiv.org/abs/1308.2043)

[5] Demailly, Jean-Pierre Champs magnétiques et inégalités de Morse pour la d '' -cohomologie, Ann. Inst. Fourier (Grenoble), Volume 35 (1985) no. 4, pp. 189-229 | Article | Numdam | MR 812325 | Zbl 0565.58017

[6] Demailly, Jean-Pierre Holomorphic Morse inequalities, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) (Proc. Sympos. Pure Math.), Volume 52, Amer. Math. Soc., Providence, RI, 1991, pp. 93-114 | MR 1128538 | Zbl 0755.32008

[7] Demailly, Jean-Pierre A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993) no. 2, pp. 323-374 http://projecteuclid.org/euclid.jdg/1214453680 | MR 1205448 | Zbl 0783.32013

[8] Demailly, Jean-Pierre Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, Special Issue: In memory of Eckart Viehweg, pp. 1165-1207 | Article | MR 2918158

[9] Demailly, Jean-Pierre; Paun, Mihai Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274 | Article | MR 2113021 | Zbl 1064.32019

[10] Dinew, Sławomir; Kołodziej, Sławomir Pluripotential estimates on compact Hermitian manifolds, Advances in geometric analysis (Adv. Lect. Math. (ALM)), Volume 21, Int. Press, Somerville, MA, 2012, pp. 69-86 | MR 3077248

[11] Gauduchon, Paul Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977) no. 5, p. A387-A390 | MR 470920 | Zbl 0362.53024

[12] Lamari, A. Le cône kählérien d’une surface, J. Math. Pures Appl. (9), Volume 78 (1999) no. 3, pp. 249-263 | Article | MR 1687094 | Zbl 0941.32007

[13] Lamari, Ahcène Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1, pp. vii, x, 263-285 | Article | Numdam | MR 1688140 | Zbl 0926.32026

[14] Popovici, D. An Observation Relative to a Paper by J. Xiao (http://arxiv.org/abs/1405.2518)

[15] Siu, Yum Tong Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Workshop Bonn 1984 (Bonn, 1984) (Lecture Notes in Math.), Volume 1111, Springer, Berlin, 1985, pp. 169-192 | Article | MR 797421 | Zbl 0577.32032

[16] Sullivan, Dennis Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 | Article | MR 433464 | Zbl 0335.57015

[17] Tosatti, Valentino; Weinkove, Ben The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., Volume 23 (2010) no. 4, pp. 1187-1195 | Article | MR 2669712 | Zbl 1208.53075

Cité par Sources :