Let be a complex quasi-simple algebraic group and be a partial flag variety. The projections of Richardson varieties from the full flag variety form a stratification of . We show that the closure partial order of projected Richardson varieties agrees with that of a subset of Schubert varieties in the affine flag variety of . Furthermore, we compare the torus-equivariant cohomology and -theory classes of these two stratifications by pushing or pulling these classes to the affine Grassmannian. Our work generalizes results of Knutson, Lam, and Speyer for the Grassmannian of type .
Soit un groupe algébrique complexe quasi-simple et une variété de drapeaux partiels. La projection sur des variétés de Richardson (de la variété des drapeaux complets) forment une stratification de . Nous montrons que les relations d’adhérence des variétés de Richardson projetées correspondent à celles d’un certain sous-ensemble de variétés de Schubert sur la variété de drapeaux affine de . Nous comparons aussi les classes de cohomologie équivariante et de -théorie de ces deux stratifications. Notre travail généralise celui de Knutson, Lam et Speyer pour la grassmannienne de type .
Keywords: flag variety, Schubert calculus, projected Richardson variety, affine Schubert variety
Mot clés : Variété de drapeaux, calcul de Schubert, variété de Richardson projetée, variété de Schubert affine
@article{AIF_2015__65_6_2385_0, author = {He, Xuhua and Lam, Thomas}, title = {Projected {Richardson} varieties and affine {Schubert} varieties}, journal = {Annales de l'Institut Fourier}, pages = {2385--2412}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2990}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2990/} }
TY - JOUR AU - He, Xuhua AU - Lam, Thomas TI - Projected Richardson varieties and affine Schubert varieties JO - Annales de l'Institut Fourier PY - 2015 SP - 2385 EP - 2412 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2990/ DO - 10.5802/aif.2990 LA - en ID - AIF_2015__65_6_2385_0 ER -
%0 Journal Article %A He, Xuhua %A Lam, Thomas %T Projected Richardson varieties and affine Schubert varieties %J Annales de l'Institut Fourier %D 2015 %P 2385-2412 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2990/ %R 10.5802/aif.2990 %G en %F AIF_2015__65_6_2385_0
He, Xuhua; Lam, Thomas. Projected Richardson varieties and affine Schubert varieties. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2385-2412. doi : 10.5802/aif.2990. http://archive.numdam.org/articles/10.5802/aif.2990/
[1] Singularities of generalized Richardson varieties, Comm. Algebra, Volume 40 (2012) no. 4, pp. 1466-1495 | DOI | MR | Zbl
[2] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, pp. xiv+363 | MR | Zbl
[3] Bruhat order of Coxeter groups and shellability, Adv. in Math., Volume 43 (1982) no. 1, pp. 87-100 | DOI | MR | Zbl
[4] Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Volume 258 (2002) no. 1, pp. 137-159 (Special issue in celebration of Claudio Procesi’s 60th birthday) | DOI | MR | Zbl
[5] Finiteness of cominuscule quantum -theory, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 3, p. 477-494 (2013) | EuDML | MR | Zbl
[6] A Littlewood-Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[7] Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc., Volume 16 (2003) no. 4, p. 901-915 (electronic) | DOI | MR | Zbl
[8] Quantum cohomology of minuscule homogeneous spaces, Transform. Groups, Volume 13 (2008) no. 1, pp. 47-89 | DOI | MR | Zbl
[9] Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997, pp. x+495 | MR | Zbl
[10] Hecke algebras and shellings of Bruhat intervals, Compositio Math., Volume 89 (1993) no. 1, pp. 91-115 | Numdam | MR | Zbl
[11] -classes for matroids and equivariant localization, Duke Math. J., Volume 161 (2012) no. 14, pp. 2699-2723 | DOI | MR | Zbl
[12] Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc., Volume 361 (2009) no. 11, pp. 5753-5780 | DOI | MR | Zbl
[13] The combinatorics of Bernstein functions, Trans. Amer. Math. Soc., Volume 353 (2001) no. 3, p. 1251-1278 (electronic) | DOI | MR | Zbl
[14] Computation of generalized equivariant cohomologies of Kac-Moody flag varieties, Adv. Math., Volume 197 (2005) no. 1, pp. 198-221 | MR | Zbl
[15] Minimal length elements in some double cosets of Coxeter groups, Adv. Math., Volume 215 (2007) no. 2, pp. 469-503 | DOI | MR | Zbl
[16] A subalgebra of 0-Hecke algebra, J. Algebra, Volume 322 (2009) no. 11, pp. 4030-4039 | DOI | MR | Zbl
[17] Normality and Cohen-Macaulayness of local models of Shimura varieties, Duke Math. J., Volume 162 (2013) no. 13, pp. 2509-2523 | DOI | MR
[18] On intersections of certain partitions of a group compactification, Int. Math. Res. Not. IMRN (2011) no. 11, pp. 2534-2564 | DOI | MR | Zbl
[19] On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. (1965) no. 25, pp. 5-48 | Numdam | MR | Zbl
[20] Positroid varieties: juggling and geometry, Compos. Math., Volume 149 (2013) no. 10, pp. 1710-1752 | DOI | MR
[21] Projections of Richardson varieties, J. Reine Angew. Math., Volume 687 (2014), pp. 133-157 | DOI | MR
[22] The nil Hecke ring and cohomology of for a Kac-Moody group , Adv. in Math., Volume 62 (1986) no. 3, pp. 187-237 | DOI | MR | Zbl
[23] -equivariant -theory of generalized flag varieties, J. Differential Geom., Volume 32 (1990) no. 2, pp. 549-603 http://projecteuclid.org/euclid.jdg/1214445320 | MR | Zbl
[24] Minuscule alcoves for and , Manuscripta Math., Volume 102 (2000) no. 4, pp. 403-428 | DOI | MR | Zbl
[25] Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Inc., Boston, MA, 2002, pp. xvi+606 | DOI | MR | Zbl
[26] Affine Stanley symmetric functions, Amer. J. Math., Volume 128 (2006) no. 6, pp. 1553-1586 http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.6lam.pdf | MR | Zbl
[27] -theory Schubert calculus of the affine Grassmannian, Compos. Math., Volume 146 (2010) no. 4, pp. 811-852 | DOI | MR | Zbl
[28] From double quantum Schubert polynomials to -double Schur functions via the Toda lattice (http://arxiv.org/abs/1109.2193)
[29] Quantum cohomology of and homology of affine Grassmannian, Acta Math., Volume 204 (2010) no. 1, pp. 49-90 | DOI | MR | Zbl
[30] Total positivity for cominuscule Grassmannians, New York J. Math., Volume 14 (2008), pp. 53-99 http://nyjm.albany.edu:8000/j/2008/14_53.html | MR | Zbl
[31] Total positivity in partial flag manifolds, Represent. Theory, Volume 2 (1998), pp. 70-78 | DOI | MR | Zbl
[32] Parabolic character sheaves. I, Mosc. Math. J., Volume 4 (2004) no. 1, p. 153-179, 311 | MR | Zbl
[33] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 | DOI | MR | Zbl
[34] Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008) no. 1, pp. 118-198 (With an appendix by T. Haines and Rapoport) | DOI | MR | Zbl
[35] Total positivity, Grassmannians, and networks (http://www-math.mit.edu/~apost/papers/tpgrass.pdf)
[36] Intersections of double cosets in algebraic groups, Indag. Math. (N.S.), Volume 3 (1992) no. 1, pp. 69-77 | DOI | MR | Zbl
[37] Closure relations for totally nonnegative cells in , Math. Res. Lett., Volume 13 (2006) no. 5-6, pp. 775-786 | DOI | MR | Zbl
[38] Affine patches on positroid varieties and affine pipe dreams, Cornell University (2010) (Ph. D. Thesis http://arxiv.org/abs/1011.3705) | MR
[39] Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. (4), Volume 4 (1971), pp. 393-398 | Numdam | MR | Zbl
[40] Enumeration of totally positive Grassmann cells, Adv. Math., Volume 190 (2005) no. 2, pp. 319-342 | DOI | MR | Zbl
[41] Shelling totally nonnegative flag varieties, J. Reine Angew. Math., Volume 609 (2007), pp. 1-21 | DOI | MR | Zbl
[42] On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2), Volume 180 (2014) no. 1, pp. 1-85 | DOI | MR | Zbl
Cited by Sources: