Cet article borne de manière explicite la somme des nombres de Betti locaux d’un germe analytique réel par un polynôme en la multiplicité du germe. Ce résultat peut être interprété comme une localisation de la borne classique d’Oleinik–Petrovsky (ou borne de Thom–Milnor) de la somme des nombres de Betti d’un ensemble semi-algébrique. Les éléments clefs de la preuve sont le cône tangent du germe, le théorème de trivialité topologique de Thom–Mather, la borne d’Oleinik–Petrovsky, et un résultat de D. Mumford et J. Heintz bornant le degré des générateurs d’un idéal par un polynôme en la multiplicité du degré géométrique de la variété qui lui est associée. Le résultat est ensuite utilisé pour borner des invariants géométriques connus : les invariants de Lipschitz–Killing et les variations de Vitushkin.
This paper proves the existence of a bound on the sum of local Betti numbers of a real analytic germ by a polynomial function of the multiplicity of the germ. This result can be interpreted as a localization of the classical Oleinik–Petrovsky bound (aka. Thom–Milnor bound) on the sum of Betti numbers of a semi-algebraic set. The key elements of the proof are the tangent cone of the germ, the Thom–Mather topological trivialization theorem, the Oleinik–Petrovsky bound, and a result by D. Mumford and J. Heintz bounding the degrees of the generators of an ideal by a polynomial function of the geometric degree of its associated variety. Our result is then applied to yield bounds on known geometric invariants: the Lipschitz–Killing invariants, and the Vitushkin variations.
Révisé le :
Accepté le :
Publié le :
Keywords: multiplicity, analytic germ, Betti number, Thom–Mather, topological triviality, Thom–Milnor, Lipschitz–Killing, Vitushkin
Mot clés : multiplicité, germe analytique, nombre de Betti, Thom–Mather, trivialité topologique, Thom–Milnor, Lipschitz–Killing, Vitushkin
@article{AIF_2017__67_1_367_0, author = {Alberti, Lionel F.}, title = {Polynomial {Bound} on the {Local} {Betti} {Numbers} of a {Real} {Analytic} {Germ}}, journal = {Annales de l'Institut Fourier}, pages = {367--396}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {1}, year = {2017}, doi = {10.5802/aif.3085}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3085/} }
TY - JOUR AU - Alberti, Lionel F. TI - Polynomial Bound on the Local Betti Numbers of a Real Analytic Germ JO - Annales de l'Institut Fourier PY - 2017 SP - 367 EP - 396 VL - 67 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3085/ DO - 10.5802/aif.3085 LA - en ID - AIF_2017__67_1_367_0 ER -
%0 Journal Article %A Alberti, Lionel F. %T Polynomial Bound on the Local Betti Numbers of a Real Analytic Germ %J Annales de l'Institut Fourier %D 2017 %P 367-396 %V 67 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3085/ %R 10.5802/aif.3085 %G en %F AIF_2017__67_1_367_0
Alberti, Lionel F. Polynomial Bound on the Local Betti Numbers of a Real Analytic Germ. Annales de l'Institut Fourier, Tome 67 (2017) no. 1, pp. 367-396. doi : 10.5802/aif.3085. http://archive.numdam.org/articles/10.5802/aif.3085/
[1] Bounding the number of connected components of a real algebraic set, Discrete Comput. Geom., Volume 6 (1991) no. 3, pp. 191-209
[2] Lipschitz-Killing invariants, Math. Nachr., Volume 245 (2002), pp. 5-25
[3] Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 12, Springer-Verlag, Berlin, 1987, x+373 pages
[4] Formule de Cauchy-Crofton pour la densité des ensembles sous-analytiques, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 6, pp. 505-508
[5] Équisingularité réelle : nombres de Lelong et images polaires, Ann. Sci. École Norm. Sup., Volume 33 (2000) no. 6, pp. 757-788
[6] Équisingularité réelle II : invariants locaux et conditions de régularité, Ann. Sci. École Norm. Sup., Volume 41 (2008) no. 2, pp. 1-48
[7] Intersection theory in analytic geometry, Math. Ann., Volume 180 (1969), pp. 175-204
[8] A new efficient algorithm for computing Gröbner bases without reduction to zero , Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, New York (2002), p. 75-83 (electronic)
[9] The rectifiable subsets of -space, Trans. Amer. Soc., Volume 62 (1947), pp. 114-192
[10] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pages
[11] Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 14, Springer-Verlag, Berlin, 1988, xiv+272 pages
[12] Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages (Graduate Texts in Mathematics, No. 52)
[13] Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci., Volume 24 (1983) no. 3, pp. 239-277
[14] Variatsii mnozhestv i funktsii [Variations of sets and functions], Izdat. “Nauka”, Moscow, 1975, 352 pages (Edited by A. G. Vituškin)
[15] Densité des ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble), Volume 39 (1989) no. 3, pp. 753-771
[16] Un analogue local de l’inégalité de Petrowsky-Oleinik, Séminaire sur la géométrie algébrique réelle, Tome I, II (Publ. Math. Univ. Paris VII), Volume 24, Univ. Paris VII, Paris, 1986, pp. 73-83
[17] Notes on topological stability, Bull. Amer. Math. Soc. (N.S.), Volume 49 (2012) no. 4, pp. 475-506 | DOI
[18] On the Betti numbers of real varieties, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 275-280
[19] Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100
[20] Multiplicity as a invariant, Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996) (Pitman Res. Notes Math. Ser.), Volume 381, Longman, Harlow, 1998, pp. 215-221
[21] Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 205-244
[22] Tangents to an analytic variety, Ann. of Math., Volume 81 (1965), pp. 496-549
[23] Tame geometry with application in smooth analysis, Lecture Notes in Mathematics, 1834, Springer-Verlag, Berlin, 2004, viii+186 pages
Cité par Sources :