Fonctions arithmétiques et formes binaires irréductibles de degré 3
[Arithmetic functions and irreducible binary forms of degree 3]
Annales de l'Institut Fourier, Volume 68 (2018) no. 3, pp. 1297-1363.

In this article, we give some estimates for the average order, over the values of the cubic form X 1 3 +2X 2 3 , for some multiplicative functions h satisfying certain conditions. We provide an asymptotic formula for the number of y-friable values of n 1 3 +2n 2 3 , valid in an unbounded range. Our method also applies to some oscillating multiplicative functions like the Mœbius function μ : this gives another proof of the Chowla conjecture for the form X 1 3 +2X 2 3 recently proved by Helfgott in the more general case of binary and irreducible cubic forms.

Dans cet article, nous obtenons des estimations de l’ordre moyen, sur les valeurs de la forme cubique X 1 3 +2X 2 3 , de fonctions multiplicatives h soumises à certaines conditions. On donne en particulier une formule asymptotique du nombre d’entiers friables de la forme n 1 3 +2n 2 2 , valide pour un paramètre de friabilité non borné. La méthode utilisée s’applique également à des fonctions multiplicatives oscillantes comme la fonction μ de Mœbius : il s’ensuit une nouvelle preuve de la conjecture de Chowla pour la forme X 1 3 +2X 2 3 , récemment démontrée par Helfgott dans le cas plus général des formes binaires cubiques irréductibles.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3189
Classification: 11E76, 11N25, 11N36, 11N37, 11Y05
Mot clés : Entiers friables, fonctions multiplicatives, cribles, formes binaires
Keywords: Friable integers, multiplicative functions, sieves, binary forms
Lachand, Armand 1

1 Institut Élie Cartan Université de Lorraine B.P. 70239 54506 Vandœuvre-lès-Nancy Cedex (France)
@article{AIF_2018__68_3_1297_0,
     author = {Lachand, Armand},
     title = {Fonctions arithm\'etiques et formes binaires irr\'eductibles de degr\'e $3$},
     journal = {Annales de l'Institut Fourier},
     pages = {1297--1363},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.5802/aif.3189},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.3189/}
}
TY  - JOUR
AU  - Lachand, Armand
TI  - Fonctions arithmétiques et formes binaires irréductibles de degré $3$
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 1297
EP  - 1363
VL  - 68
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.3189/
DO  - 10.5802/aif.3189
LA  - fr
ID  - AIF_2018__68_3_1297_0
ER  - 
%0 Journal Article
%A Lachand, Armand
%T Fonctions arithmétiques et formes binaires irréductibles de degré $3$
%J Annales de l'Institut Fourier
%D 2018
%P 1297-1363
%V 68
%N 3
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.3189/
%R 10.5802/aif.3189
%G fr
%F AIF_2018__68_3_1297_0
Lachand, Armand. Fonctions arithmétiques et formes binaires irréductibles de degré $3$. Annales de l'Institut Fourier, Volume 68 (2018) no. 3, pp. 1297-1363. doi : 10.5802/aif.3189. http://archive.numdam.org/articles/10.5802/aif.3189/

[1] Balog, Antal; Blomer, Valentin; Dartyge, Cécile; Tenenbaum, Gérald Friable values of binary forms, Comment. Math. Helv., Volume 87 (2012) no. 3, pp. 639-667 | DOI | Zbl

[2] Bombieri, Enrico The asymptotic sieve, Rend. Accad. Naz. XL, Volume 1-2 (1976), pp. 243-269 | Zbl

[3] de la Bretèche, Régis; Browning, Timothy Daniel Sums of arithmetic functions over values of binary forms, Acta Arith., Volume 125 (2006) no. 3, pp. 291-304 | DOI | Zbl

[4] de la Bretèche, Régis; Tenenbaum, Gérald Moyennes de fonctions arithmétiques de formes binaires, Mathematika, Volume 58 (2012) no. 2, pp. 290-304 | DOI | Zbl

[5] de la Bretèche, Régis; Tenenbaum, Gérald Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu, Volume 12 (2013) no. 4, pp. 759-819 | DOI | Zbl

[6] de Bruijn, Nicolaas Govert On the number of positive integers x and free prime factors >y. II, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 69 (1966), pp. 239-247 | DOI

[7] Chowla, Sarvadaman The Riemann hypothesis and Hilbert’s tenth problem, Norske Vid. Selsk. Forhdl., Volume 38 (1965), pp. 62-64 | Zbl

[8] Crandall, Richard; Pomerance, Carl Prime numbers, a computational perspective, Springer, 2005, xvi+597 pages | Zbl

[9] Daniel, Stephan On the divisor-sum problem for binary forms, J. Reine Angew. Math., Volume 507 (1999), pp. 107-129 | DOI | Zbl

[10] Delmer, Francine Sur la somme de diviseurs kx {d[f(k)]} s , C. R. Acad. Sci. Paris Sér. A, Volume 272 (1971), pp. 849-852 | Zbl

[11] Friedlander, John; Iwaniec, Henrik Opera de cribro, American Mathematical Society Colloquium Publications, 57, American Mathematical Society, 2010, xx+527 pages | Zbl

[12] Greaves, George On the divisor-sum problem for binary cubic forms, Acta Arith., Volume 17 (1970), pp. 1-28 | DOI | Zbl

[13] Greaves, George Large prime factors of binary forms, J. Number Theory, Volume 3 (1971), pp. 35-59 errata in ibid. 9 (1977), p. 561-562 | DOI | Zbl

[14] Greaves, George Power-free values of binary forms, Q. J. Math., Oxf. II. Ser., Volume 43 (1992) no. 169, pp. 45-65 | DOI | Zbl

[15] Halberstam, Heini; Richert, Hans-Egon Sieve methods, London Mathematical Society Monographs, 4, Academic Press, 1974, xiv+364 pages (loose errata) | Zbl

[16] Hanrot, Guillaume; Tenenbaum, Gérald; Wu, Jie Moyennes de certaines fonctions multiplicatives sur les entiers friables. II, Proc. Lond. Math. Soc., Volume 96 (2008) no. 1, pp. 107-135 | DOI | Zbl

[17] Heath-Brown, D. Roger Diophantine approximation with square-free numbers, Math. Z., Volume 187 (1984) no. 3, pp. 335-344 | DOI | Zbl

[18] Heath-Brown, D. Roger Primes represented by x 3 +2y 3 , Acta Math., Volume 186 (2001) no. 1, pp. 1-84 | DOI | Zbl

[19] Heath-Brown, D. Roger; Moroz, Boris Zelikovich Primes represented by binary cubic forms, Proc. Lond. Math. Soc., Volume 84 (2002) no. 2, pp. 257-288 | DOI | Zbl

[20] Heath-Brown, D. Roger; Moroz, Boris Zelikovich On the representation of primes by cubic polynomials in two variables, Proc. Lond. Math. Soc., Volume 88 (2004) no. 2, pp. 289-312 | DOI | Zbl

[21] Helfgott, Harald Andres The parity problem for irreducible cubic forms (2005) (http://arxiv.org/abs/math/0501177)

[22] Lachand, Armand Entiers friables et formes binaires, Université de Lorraine (France) (2014) https://tel.archives-ouvertes.fr/tel-01104211 (Ph. D. Thesis https://tel.archives-ouvertes.fr/tel-01104211)

[23] Selberg, Atle On elementary methods in prime number-theory and their limitations, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, 1952, pp. 13-22 | Zbl

[24] Shiu, Peter A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., Volume 313 (1980), pp. 161-170 | Zbl

[25] Tenenbaum, Gérald Sur une question d’Erdős et Schinzel, A tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 405-443 | Zbl

[26] Tenenbaum, Gérald Introduction à la théorie analytique et probabiliste des nombres, Échelles, Belin, 2008, 592 pages

[27] Weber, Heinrich Lehrbuch der Algebra. 2, F. Vieweg & Sohn, 1899, x+247 pages | Zbl

Cited by Sources: