Dans cet article on se propose de construire d’une manière purement locale des invariants partiels pour des groupes
In this article, we construct in a purely local way partial (Hasse) invariants for
Révisé le :
Accepté le :
Publié le :
Mot clés : Groupes
Keywords:
@article{AIF_2018__68_4_1519_0, author = {Hernandez, Valentin}, title = {Invariants de {Hasse} $\mu $-ordinaires}, journal = {Annales de l'Institut Fourier}, pages = {1519--1607}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {4}, year = {2018}, doi = {10.5802/aif.3193}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.3193/} }
TY - JOUR AU - Hernandez, Valentin TI - Invariants de Hasse $\mu $-ordinaires JO - Annales de l'Institut Fourier PY - 2018 SP - 1519 EP - 1607 VL - 68 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3193/ DO - 10.5802/aif.3193 LA - fr ID - AIF_2018__68_4_1519_0 ER -
%0 Journal Article %A Hernandez, Valentin %T Invariants de Hasse $\mu $-ordinaires %J Annales de l'Institut Fourier %D 2018 %P 1519-1607 %V 68 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3193/ %R 10.5802/aif.3193 %G fr %F AIF_2018__68_4_1519_0
Hernandez, Valentin. Invariants de Hasse $\mu $-ordinaires. Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1519-1607. doi : 10.5802/aif.3193. https://www.numdam.org/articles/10.5802/aif.3193/
[1] Hilbert modular varieties of low dimension, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, 2004, pp. 113-175 | Zbl
[2] Overconvergent modular sheaves and modular forms for
[3] Théorie des topos et cohomologie étale des schémas. Tome 2 (Artin, Michael; Grothendieck, Alexander; Verdier, J. L.; Deligne, Pierre; Saint-Donat, Bernard, eds.), Lecture Notes in Math., 270, Springer, 1972, iv+418 pages | MR | Zbl
[4] Théorie de Dieudonné cristalline. II, Lecture Notes in Math., 930, Springer, Berlin, 1982, x+261 pages | MR | Zbl
[5] Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, Princeton, N.J., 1978, vi+243 pages | MR | Zbl
[6] Compatibility with duality for partial Hasse invariants (2016) (preprint)
[7] Groupes
[8] Torsion in the coherent cohomology of Shimura varieties and Galois representations (2015) (https://arxiv.org/abs/1507.05922)
[9] On the generic part of the cohomology of compact unitary Shimura varieties, Ann. Math., Volume 186 (2017) no. 3, pp. 649-766 | Zbl
[10] Périodes entieres de groupes p-divisibles sur une base générale, Bull. Soc. Math. France, Volume 143 (2015) no. 1, pp. 1-33 | Zbl
[11] Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | Zbl
[12] Fundamental algebraic geometry : Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005, x+339 pages | MR | Zbl
[13] Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales (Astérisque), Volume 291, Société Mathématique de France, 2004, pp. 1-200 | Zbl
[14] La filtration canonique des points de torsion des groupes
[15] Groupes
[16] Strata Hasse invariants, Hecke algebras and Galois representations (2015) (https://arxiv.org/abs/1507.05032)
[17] The
[18] Algebraic geometry I. Schemes with examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010, viii+615 pages | DOI | MR | Zbl
[19] Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 http://eudml.org/doc/103873 (Rédigé avec la collaboration de Jean Dieudonné) | Zbl
[20] Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de mathématiques supérieures, 45, Presses de l’Université de Montréal, 1974 | Zbl
[21] The geometry of Newton strata in the reduction modulo
[22] Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade
[23] La filtration canonique des
[24] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | Zbl
[25]
[26] Slope filtration of
[27] Serre–Tate local moduli, Algebraic surfaces (Orsay, 1976–78) (Lecture Notes in Math.), Volume 868, Springer, 1981, pp. 138-202 | MR | Zbl
[28] The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand, Volume 39 (1976) no. 1, pp. 19-55 | Zbl
[29] Generalized
[30] Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992) no. 2, pp. 373-444 | DOI | Zbl
[31] Relations between Dieudonné displays and crystalline Dieudonné theory, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2201-2262 | DOI | Zbl
[32] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 39, Springer, 2000, xii + 208 pages | Zbl
[33] On the Hodge-Newton filtration for
[34] Serre-Tate theory for moduli spaces of PEL type, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 223-269 | DOI | Zbl
[35] Sur la théorie de Hida pour le groupe
[36] Formes modulaires surconvergentes, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | DOI | Zbl
[37] On the classification and specialization of
[38] Period spaces for
[39] On torsion in the cohomology of locally symmetric varieties, Ann. Math., Volume 182 (2015) no. 3, pp. 945-1066 | DOI | Zbl
[40] Moduli of
[41] On the Hodge-Newton filtration for p-divisible groups with additional structures, Int. Math. Res. Not., Volume 2014 (2011) no. 13, pp. 3582-3631 | Zbl
[42] Stacks Project, 2013 (http://stacks.math.columbia.edu)
[43] Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann., Volume 356 (2013) no. 4, pp. 1493-1550 | DOI | Zbl
[44] Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 5, pp. 575-618 | DOI | MR | Zbl
[45] The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of abelian varieties (Texel Island, 1999) (Progress in Mathematics), Volume 195, Birkhäuser, Basel, 2001, pp. 441-471 | MR | Zbl
[46] A Dieudonné theory for
[47] The display of a formal
Cité par Sources :