Virtual pullbacks in K-theory
Annales de l'Institut Fourier, Volume 68 (2018) no. 4, pp. 1609-1641.

We consider virtual pullbacks in K-theory, and show that they are bivariant classes and satisfy certain functoriality. As applications to K-theoretic counting invariants, we include proofs of a virtual localization formula for schemes and a degeneration formula in Donaldson–Thomas theory.

Nous considérons les tirés en arrière virtuels en K-théorie, et montrons qu’ils sont des classes bivariantes et satisfaisant une certaine forme de fonctorialité. En tant qu’applications aux invariants de comptage K-théoriques, nous incluons des preuves d’une formule de localisation virtuelle pour les schémas et une formule de dégénérescence en théorie de Donaldson–Thomas.

Received:
Accepted:
Published online:
DOI: 10.5802/aif.3194
Classification: 14C17, 14A20, 14C35, 14N35
Keywords: virtual pullback, virtual localization, degeneration formula
Mot clés : tiré en arrière virtuel, localisation virtuelle, formule de dégénérescence
Qu, Feng 1

1 Center for Mathematical Sciences Huazhong University of Science and Technology 1037 Luoyu Road, Wuhan, Hubei Province (China)
@article{AIF_2018__68_4_1609_0,
     author = {Qu, Feng},
     title = {Virtual pullbacks in $K$-theory},
     journal = {Annales de l'Institut Fourier},
     pages = {1609--1641},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {4},
     year = {2018},
     doi = {10.5802/aif.3194},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3194/}
}
TY  - JOUR
AU  - Qu, Feng
TI  - Virtual pullbacks in $K$-theory
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 1609
EP  - 1641
VL  - 68
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.3194/
DO  - 10.5802/aif.3194
LA  - en
ID  - AIF_2018__68_4_1609_0
ER  - 
%0 Journal Article
%A Qu, Feng
%T Virtual pullbacks in $K$-theory
%J Annales de l'Institut Fourier
%D 2018
%P 1609-1641
%V 68
%N 4
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.3194/
%R 10.5802/aif.3194
%G en
%F AIF_2018__68_4_1609_0
Qu, Feng. Virtual pullbacks in $K$-theory. Annales de l'Institut Fourier, Volume 68 (2018) no. 4, pp. 1609-1641. doi : 10.5802/aif.3194. http://archive.numdam.org/articles/10.5802/aif.3194/

[1] Abramovich, Dan; Cadman, Charles; Fantechi, Barbara; Wise, Jonathan Expanded degenerations and pairs, Comm. Algebra, Volume 41 (2013) no. 6, pp. 2346-2386 | DOI | MR | Zbl

[2] Abramovich, Dan; Olsson, Martin; Vistoli, Angelo Twisted stable maps to tame Artin stacks, J. Algebr. Geom., Volume 20 (2011) no. 3, pp. 399-477 erratum in ibid. 24 (2015), no. 2, p. 399-400 | DOI | MR | Zbl

[3] Anderson, Dave; Payne, Sam Operational K-theory, Doc. Math., Volume 20 (2015), pp. 357-399 | MR | Zbl

[4] Behrend, Kai A.; Fantechi, Barbara The intrinsic normal cone, Invent. Math., Volume 128 (1997) no. 1, pp. 45-88 | DOI | MR | Zbl

[5] Chang, Huai-Liang; Kiem, Young-Hoon; Li, Jun Torus localization and wall crossing for cosection localized virtual cycles, Adv. Math., Volume 308 (2017), pp. 964-986 | DOI | MR | Zbl

[6] Ciocan-Fontanine, Ionuţ; Kapranov, Mikhail Virtual fundamental classes via dg-manifolds, Geom. Topol., Volume 13 (2009) no. 3, pp. 1779-1804 | DOI | MR | Zbl

[7] Edidin, Dan; Graham, William Nonabelian localization in equivariant K-theory and Riemann-Roch for quotients, Adv. Math., Volume 198 (2005) no. 2, pp. 547-582 | DOI | MR | Zbl

[8] Faltings, Gerd Finiteness of coherent cohomology for proper fppf stacks, J. Algebr. Geom., Volume 12 (2003) no. 2, pp. 357-366 | DOI | MR | Zbl

[9] Fantechi, Barbara; Göttsche, Lothar Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol., Volume 14 (2010) no. 1, pp. 83-115 | DOI | MR | Zbl

[10] Fulton, William Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998, xiv+470 pages | DOI | MR | Zbl

[11] Graber, Tom; Pandharipande, Rahul Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | DOI | MR | Zbl

[12] Graber, Tom; Vakil, Ravi Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Volume 130 (2005) no. 1, pp. 1-37 | DOI | MR | Zbl

[13] Hall, Jack; Rydh, David Algebraic groups and compact generation of their derived categories of representations, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1903-1923 | DOI | MR | Zbl

[14] Hall, Jack; Rydh, David Perfect complexes on algebraic stacks, Compos. Math., Volume 153 (2017) no. 11, pp. 2318-2367 | Zbl

[15] Huybrechts, Daniel; Thomas, Richard Paul Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., Volume 346 (2010) no. 3, pp. 545-569 erratum in ibid. 258 (2014), no. 1-2, p. 561-563 | DOI | MR | Zbl

[16] Kim, Bumsig; Kresch, Andrew; Pantev, Tony Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Volume 179 (2003) no. 1-2, pp. 127-136 | DOI | MR | Zbl

[17] Kresch, Andrew Canonical rational equivalence of intersections of divisors, Invent. Math., Volume 136 (1999) no. 3, pp. 483-496 | DOI | MR | Zbl

[18] Kresch, Andrew Cycle groups for Artin stacks, Invent. Math., Volume 138 (1999) no. 3, pp. 495-536 | DOI | MR | Zbl

[19] Laumon, Gérard; Moret-Bailly, Laurent Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 39, Springer, 2000, xii+208 pages | MR | Zbl

[20] Lee, Yuan-Pin Quantum K-theory. I. Foundations, Duke Math. J., Volume 121 (2004) no. 3, pp. 389-424 | DOI | MR | Zbl

[21] Li, Jun Stable morphisms to singular schemes and relative stable morphisms, J. Differ. Geom., Volume 57 (2001) no. 3, pp. 509-578 http://projecteuclid.org/euclid.jdg/1090348132 | MR | Zbl

[22] Li, Jun; Wu, Baosen Good degeneration of Quot-schemes and coherent systems, Commun. Anal. Geom., Volume 23 (2015) no. 4, pp. 841-921 | DOI | MR | Zbl

[23] Manolache, Cristina Virtual pull-backs, J. Algebr. Geom., Volume 21 (2012) no. 2, pp. 201-245 | DOI | MR | Zbl

[24] Maulik, Davesh; Pandharipande, Rahul; Thomas, Richard Paul Curves on K3 surfaces and modular forms, J. Topol., Volume 3 (2010) no. 4, pp. 937-996 (With an appendix by A. Pixton) | DOI | MR | Zbl

[25] Okounkov, Andrei Lectures on K-theoretic computations in enumerative geometry (2015) (https://arxiv.org/abs/1512.07363v1)

[26] Olsson, Martin On proper coverings of Artin stacks, Adv. Math., Volume 198 (2005) no. 1, pp. 93-106 | DOI | MR | Zbl

[27] Olsson, Martin Sheaves on Artin stacks, J. Reine Angew. Math., Volume 603 (2007), pp. 55-112 | DOI | MR | Zbl

[28] Poma, Flavia Virtual classes of Artin stacks, Manuscr. Math., Volume 146 (2015) no. 1-2, pp. 107-123 | DOI | MR | Zbl

[29] Qu, Feng Deformation to the normal cone for algebraic stacks (in preparation)

[30] Stacks Project Authors Stacks Project (http://stacks.math.columbia.edu)

Cited by Sources: