We construct a complete conformal scattering theory for Maxwell fields in the static exterior region of a Reissner–Nordström–de Sitter black hole spacetime. We use uniform energy decay results, which we obtain in a separate paper, to show that the trace operators are injective and have closed ranges. We then solve the Goursat problem (characteristic Cauchy problem) for Maxwell fields on the null boundaries showing that the trace operators are also surjective.
Nous construisons une théorie complète de scattering conforme pour les champs de Maxwell dans l’extérieur statique de l’espace-temps de trou noir de De Sitter–Reissner–Nordström. Nous utilisons des résultats de décroissance que nous avons obtenus dans un article séparé, afin de montrer que les opérateurs de trace sont injectifs et d’images fermées. Ensuite, nous résolvons le problème de Goursat pour les champs de Maxwell sur la frontière isotrope ce qui montre que les opérateurs de trace sont surjectifs aussi.
Revised:
Accepted:
Published online:
Keywords: Conformal scattering, Black holes, Maxwell’s equations, Reissner–Nordström–de Sitter metric, Goursat problem
Mot clés : Scattering conforme, trous noirs, équations de Maxwell, métrique de De Sitter–Reissner–Nordström, problème de Goursat
@article{AIF_2019__69_5_2291_0, author = {Mokdad, Mokdad}, title = {Conformal {Scattering} of {Maxwell} fields on {Reissner{\textendash}Nordstr\"om{\textendash}de} {Sitter} {Black} {Hole} {Spacetimes}}, journal = {Annales de l'Institut Fourier}, pages = {2291--2329}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {5}, year = {2019}, doi = {10.5802/aif.3295}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3295/} }
TY - JOUR AU - Mokdad, Mokdad TI - Conformal Scattering of Maxwell fields on Reissner–Nordström–de Sitter Black Hole Spacetimes JO - Annales de l'Institut Fourier PY - 2019 SP - 2291 EP - 2329 VL - 69 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3295/ DO - 10.5802/aif.3295 LA - en ID - AIF_2019__69_5_2291_0 ER -
%0 Journal Article %A Mokdad, Mokdad %T Conformal Scattering of Maxwell fields on Reissner–Nordström–de Sitter Black Hole Spacetimes %J Annales de l'Institut Fourier %D 2019 %P 2291-2329 %V 69 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3295/ %R 10.5802/aif.3295 %G en %F AIF_2019__69_5_2291_0
Mokdad, Mokdad. Conformal Scattering of Maxwell fields on Reissner–Nordström–de Sitter Black Hole Spacetimes. Annales de l'Institut Fourier, Volume 69 (2019) no. 5, pp. 2291-2329. doi : 10.5802/aif.3295. http://archive.numdam.org/articles/10.5802/aif.3295/
[1] Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Annales de l’I.H.P. Physique théorique, Volume 54 (1991) no. 3, pp. 261-320 | MR | Zbl
[2] Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quant. Grav., Volume 19 (2002) no. 9, L71 pages | MR | Zbl
[3] On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mem. Soc. Math. France, Volume 94 (2003), pp. 1-103 | Zbl
[4] Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 137-189 | MR | Zbl
[5] On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 185-217 | MR | Zbl
[6] Lectures on black holes and linear waves, Evolution equations (Clay Mathematics Proceedings), Volume 17, Clay Mathematics Institute, 2008, pp. 97-205 | Zbl
[7] On the radiation field of pulse solutions of the wave equation, Proc. R. Soc. Lond., Ser. A, Volume 269 (1962), pp. 53-65 | MR | Zbl
[8] On the radiation field of pulse solutions of the wave equation. II, Proc. R. Soc. Lond., Ser. A, Volume 279 (1964), pp. 386-394 | MR | Zbl
[9] On the radiation field of pulse solutions of the wave equation. III, Proc. R. Soc. Lond., Ser. A, Volume 299 (1967), pp. 264-278 | MR | Zbl
[10] Radiation fields and hyperbolic scattering theory, Math. Proc. Camb. Philos. Soc., Volume 88 (1980), pp. 483-515 | DOI | MR | Zbl
[11] A remark on the characteristic Cauchy problem, J. Funct. Anal., Volume 93 (1990) no. 2, pp. 270-277 | DOI | MR | Zbl
[12] Problème de Cauchy caractéristique et scattering conforme en relativité générale, Université de Bretagne occidentale - Brest (2010) (Ph. D. Thesis)
[13] Conformal scattering for a nonlinear wave equation, J. Hyperbolic Differ. Equ., Volume 09 (2012) no. 01, pp. 1-65 | DOI | MR | Zbl
[14] Hyperbolic differential equations, Institute for advanced study, 1955 | Zbl
[15] Conformal scattering and the goursat problem, J. Hyperbolic Differ. Equ., Volume 01 (2004) no. 02, pp. 197-233 | DOI | MR | Zbl
[16] Regularity at space-like and null infinity, J. Inst. Math. Jussieu, Volume 8 (2009) no. 01, pp. 179-208 | DOI | MR | Zbl
[17] Maxwell Field on the Reissner–Nordström–de Sitter Manifold: Decay and Conformal Scattering, Université de Bretagne occidentale - Brest (France) (2016) (Ph. D. Thesis)
[18] Decay of Maxwell Fields on Reissner–Nordström–de Sitter Black Holes (2017) (http://arxiv.org/abs/1704.06441) | Zbl
[19] Reissner–Nordström–de Sitter manifold: photon sphere and maximal analytic extension, Class. Quantum Grav., Volume 34 (2017) no. 17, 175014, 175014 pages | DOI | MR | Zbl
[20] Conformal scattering on the Schwarzschild metric, Ann. Inst. Fourier, Volume 66 (2016) no. 3, pp. 1175-1216 | DOI | MR | Zbl
[21] Asymptotic Properties of Fields and Space-Times, Phys. Rev. Lett., Volume 10 (1963) no. 2, pp. 66-68 | DOI | MR
[22] Conformal treatment of infinity, Relativité, Groupes et Topologie (Lectures, Les Houches, 1963 Summer School of Theoret. Phys., Univ. Grenoble), Gordon and Breach, New York, 1964, pp. 565-584 | Zbl
[23] Zero rest-mass fields including gravitation: asymptotic behaviour, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Volume 284 (1965) no. 1397, pp. 159-203 | DOI | MR | Zbl
[24] Spinors and space-time: Volume 1, Two-spinor calculus and relativistic fields, 1, Cambridge University Press, 1987 | Zbl
[25] Spinors and space-time: Volume 2, Spinor and twistor methods in space-time geometry, 2, Cambridge University Press, 1988 | Zbl
Cited by Sources: