Another characterization of absolute stability
Annales de l'Institut Fourier, Tome 21 (1971) no. 4, pp. 175-177.

On caractérise la stabilité absolue d’un ensemble compact par les propriétés des systèmes fondamentaux de voisinages positifs invariants.

The absolute stability of a compact set is characterized in terms of a fundamental system of positive invariant neighborhoods.

@article{AIF_1971__21_4_175_0,
     author = {McCann, Roger G.},
     title = {Another characterization of absolute stability},
     journal = {Annales de l'Institut Fourier},
     pages = {175--177},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {4},
     year = {1971},
     doi = {10.5802/aif.397},
     zbl = {0226.54037},
     mrnumber = {49 #6206},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.397/}
}
TY  - JOUR
AU  - McCann, Roger G.
TI  - Another characterization of absolute stability
JO  - Annales de l'Institut Fourier
PY  - 1971
DA  - 1971///
SP  - 175
EP  - 177
VL  - 21
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.397/
UR  - https://zbmath.org/?q=an%3A0226.54037
UR  - https://www.ams.org/mathscinet-getitem?mr=49 #6206
UR  - https://doi.org/10.5802/aif.397
DO  - 10.5802/aif.397
LA  - en
ID  - AIF_1971__21_4_175_0
ER  - 
McCann, Roger G. Another characterization of absolute stability. Annales de l'Institut Fourier, Tome 21 (1971) no. 4, pp. 175-177. doi : 10.5802/aif.397. http://archive.numdam.org/articles/10.5802/aif.397/

[1] J. Auslander, P. Seibert, Prolongation and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268. | Numdam | MR 31 #455 | Zbl 0128.31303

[2] O. Hajek, Absolute stability of non-compact sets (to appear). | Zbl 0226.34045

Cité par Sources :