On fait une étude des algèbres qui sont des quotients des algèbres uniformes et on démontre que cette classe est stable par interpolation. On démontre en particulier que le , appartiennent à cette classe et que appartient à cette classe si et seulement si .
We study Banach algebras that are quotients of uniform algebras and we show in particular that the class is stable by interpolation. We also show that , are algebras and that is a -algebra if and only if .
@article{AIF_1972__22_4_1_0, author = {Varopoulos, Nicolas Th.}, title = {Some remarks on $Q$-algebras}, journal = {Annales de l'Institut Fourier}, pages = {1--11}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {22}, number = {4}, year = {1972}, doi = {10.5802/aif.432}, mrnumber = {49 #3544}, zbl = {0235.46074}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.432/} }
Varopoulos, Nicolas Th. Some remarks on $Q$-algebras. Annales de l'Institut Fourier, Tome 22 (1972) no. 4, pp. 1-11. doi : 10.5802/aif.432. http://archive.numdam.org/articles/10.5802/aif.432/
[1] Quotient algebras of uniform algebras, Symposium on Function algebras and rational approximation, University of Michigan 1969.
,[2] Quotient algebras of uniform algebras (to appear). | Zbl
,[3] Séminaire 1953-1954, Produits tensoriels topologiques, Exposé n° 7 II.
,[4] Intermediate spaces and interpolation, the complex method. Studia Math., T. xxiv (1964), 113-190. | MR | Zbl
,[5] Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51-111. | MR | Zbl
,[6] Trigonometric series, C.I.P. (1959), vol. I, ch. VI, § 3 ; vol. II, ch. XII § 8. | Zbl
,[7] Sur les quotients des algèbres uniformes, C.R. Acad. Sci. t. 274 (A) p. 1344-1346. | Zbl
,[8] Tensor algebras over discrete spaces, J. Functional Analysis, 3 (1969), 321-335. | MR | Zbl
,Cité par Sources :