We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.
Nous montrons qu’un théorème de Rudin, concernant la somme des sous-espaces fermés dans un espace de Banach, a une réciproque. Au moyen d’un exemple nous montrons que ce résultat a le caractère d’être le meilleur possible.
@article{AIF_1975__25_2_213_0, author = {Stegenga, David}, title = {A note on spaces of type $H^\infty +C$}, journal = {Annales de l'Institut Fourier}, pages = {213--217}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {2}, year = {1975}, doi = {10.5802/aif.561}, mrnumber = {52 #11546}, zbl = {0301.46041}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.561/} }
TY - JOUR AU - Stegenga, David TI - A note on spaces of type $H^\infty +C$ JO - Annales de l'Institut Fourier PY - 1975 SP - 213 EP - 217 VL - 25 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.561/ DO - 10.5802/aif.561 LA - en ID - AIF_1975__25_2_213_0 ER -
Stegenga, David. A note on spaces of type $H^\infty +C$. Annales de l'Institut Fourier, Volume 25 (1975) no. 2, pp. 213-217. doi : 10.5802/aif.561. http://archive.numdam.org/articles/10.5802/aif.561/
[1] Past and future, Math. Scand., 21 (1967), 5-16. | Zbl
and ,[2] Spaces of Type H∞ + C, Annales de l'Institut Fourier, 25, 1 (1975), 99-125. | Numdam | Zbl
,[3] Projections on invariant subspaces, Proc. AMS, 13 (1962), 429-432. | Zbl
,[4] Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. | Zbl
,[5] Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. | Zbl
,Cited by Sources: