Pure fields of degree 9 with class number prime to 3
Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 1-15.

The main theorem gives necessary conditions and sufficient conditions for Q(n 9) to have class number prime to 3. These conditions involve only the rational prime factorization of n and congruences mod 27 of the prime factors of n. They give necessary and sufficient conditions for most n.

On détermine des conditions nécessaires et des conditions suffisantes pour que le nombre de classes de Q(n 9) soit premier à 3. Ces conditions n’utilisent que la factorisation en nombres premiers rationnels de n et des congruences mod 27 de ces facteurs premiers. Ils donnent des conditions nécessaires et suffisantes pour presque tout n.

@article{AIF_1980__30_2_1_0,
     author = {Walter, Colin D.},
     title = {Pure fields of degree 9 with class number prime to 3},
     journal = {Annales de l'Institut Fourier},
     pages = {1--15},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {30},
     number = {2},
     year = {1980},
     doi = {10.5802/aif.781},
     mrnumber = {82b:12006},
     zbl = {0408.12009},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.781/}
}
TY  - JOUR
AU  - Walter, Colin D.
TI  - Pure fields of degree 9 with class number prime to 3
JO  - Annales de l'Institut Fourier
PY  - 1980
SP  - 1
EP  - 15
VL  - 30
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.781/
DO  - 10.5802/aif.781
LA  - en
ID  - AIF_1980__30_2_1_0
ER  - 
%0 Journal Article
%A Walter, Colin D.
%T Pure fields of degree 9 with class number prime to 3
%J Annales de l'Institut Fourier
%D 1980
%P 1-15
%V 30
%N 2
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.781/
%R 10.5802/aif.781
%G en
%F AIF_1980__30_2_1_0
Walter, Colin D. Pure fields of degree 9 with class number prime to 3. Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 1-15. doi : 10.5802/aif.781. http://archive.numdam.org/articles/10.5802/aif.781/

[1] P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory, 3 (1971), 226-239. | MR | Zbl

[2] R. Brauer, Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoisschen Körpers, Math. Nachr., 4 (1951), 158-174. | MR | Zbl

[3] A. Endô, On the divisibility of the class number of Q(√9n) by 3, Mem. Fac. Sci., Kyushu Univ., A, 30 (1976), 299-311. | MR | Zbl

[4] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, II, Physica-Verlag, Würzburg/Wien, 1970.

[5] T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory, 3 (1971), 7-12. | MR | Zbl

[6] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258. | MR | Zbl

[7] C. J. Parry, Class number relations in pure quintic fields, Symposia Mathematica, 15 (1975), 475-485. | MR | Zbl

[8] C. D. Walter, A class number relation in Frobenius extensions of number fields, Mathematika, 24 (1977), 216-225. | MR | Zbl

[9] C. D. Walter, Kuroda's class number relation, Acta Arithmetica, 35 (1979), 41-51. | MR | Zbl

[10] C. D. Walter, The ambiguous class group and the genus group of certain non-normal extensions, Mathematika, 26 (1979), 113-124. | MR | Zbl

Cited by Sources: