Galois module structure of rings of integers
Annales de l'Institut Fourier, Volume 30 (1980) no. 3, pp. 11-48.

Let E/F be a Galois extension of number fields with Γ= Gal(E/F) and with property that the divisors of (E:F) are non-ramified in E/Q. We denote the ring of integers of E by 𝒪 E and we study 𝒪 E as a ZΓ-module. In particular we show that the fourth power of the (locally free) class of 𝒪 E is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of E , together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.

Soit E/F une extension galoisienne de corps de nombres où les diviseurs de (E:F) sont non-ramifiés dans E/Q. On note Γ= Gal (E/F) et 𝒪 E l’anneau des entiers de E. Nous considérons 𝒪 E comme ZΓ-module et nous démontrons que la quatrième puissance de la classe (localement libre) de 𝒪 E est la classe triviale. Afin de démontrer ce résultat, nous utilisons la description de Fröhlich des groupes de classes de modules et son représentant pour la classe des 𝒪 E . De plus, nous développons une nouvelle méthode de congruences sur les déterminants pour les algèbres des groupes cycliques et nous démontrons des congruences correspondantes pour les sommes de Gauss.

@article{AIF_1980__30_3_11_0,
     author = {Taylor, Martin J.},
     title = {Galois module structure of rings of integers},
     journal = {Annales de l'Institut Fourier},
     pages = {11--48},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {30},
     number = {3},
     year = {1980},
     doi = {10.5802/aif.791},
     mrnumber = {82e:12008},
     zbl = {0416.12004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.791/}
}
TY  - JOUR
AU  - Taylor, Martin J.
TI  - Galois module structure of rings of integers
JO  - Annales de l'Institut Fourier
PY  - 1980
SP  - 11
EP  - 48
VL  - 30
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.791/
DO  - 10.5802/aif.791
LA  - en
ID  - AIF_1980__30_3_11_0
ER  - 
%0 Journal Article
%A Taylor, Martin J.
%T Galois module structure of rings of integers
%J Annales de l'Institut Fourier
%D 1980
%P 11-48
%V 30
%N 3
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.791/
%R 10.5802/aif.791
%G en
%F AIF_1980__30_3_11_0
Taylor, Martin J. Galois module structure of rings of integers. Annales de l'Institut Fourier, Volume 30 (1980) no. 3, pp. 11-48. doi : 10.5802/aif.791. http://archive.numdam.org/articles/10.5802/aif.791/

[1] Ph. Cassou-Nogues, Quelques théorèmes de base normale d'entiers, Ann. Inst. Fourier, 28, 3 (1978), 1-33. | Numdam | Zbl

[2] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular forms in one variable III, Lecture Notes in Mathematics, 349 (1973), 501-597. | MR | Zbl

[3] A. Fröhlich, Arithmetic and Galois module structure for tame extensions, J. reine und angew. Math., 286/287 (1976), 380-440. | MR | Zbl

[4] A. Fröhlich, To appear in the Springer Ergebnisse series.

[5] A. Fröhlich, Galois module structure, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, 1977, London. | Zbl

[6] A. Fröhlich, Locally free modules over arithmetic orders, J. reine angew. Math., 274/5 (1975), 112-124. | MR | Zbl

[7] A. Fröhlich and M.J. Taylor, The arithmetic theory of local Galois Gauss sums for tame characters, to appear in the Philosophical Transactions of the Royal Society. | Zbl

[8] T.Y. Lam, Artin exponents of finite groups, J. Algebra, 9 (1968), 94-119. | MR | Zbl

[9] S. Lang, Algebraic number theory, Addison-Wesley (1970). | MR | Zbl

[10] J. Martinet, Character theory and Artin L-functions, Algebraic Number fields, (Proc. Durham Symposium), Academic Press, (1977), London. | MR | Zbl

[11] E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math., 167 (1932), 147-152. | JFM | Zbl

[12] J.P. Serre, Corps locaux, Hermann, Paris, 1968.

[13] J.P. Serre, Représentations linéaires des groupes finis, 2nd ed., Hermann, Paris, 1971. | MR | Zbl

[14] J. Tate, Local constants, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, London, 1977.

[15] M.J. Taylor, Galois module structure of relative abelian extensions, J. reine angew. Math., 303/4 (1978), 97-101. | MR | Zbl

[16] M.J. Taylor, On the self-duality of a ring of integers as a Galois module, Inventiones Mathematicae, 46 (1978), 173-177. | MR | Zbl

[17] M.J. Taylor, A logarithmic description of locally free classgroups of finite groups, to appear in the Journal of Algebra.

Cited by Sources: