Maximum modulus sets
Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 37-69.

Nous étudions les sous-ensembles du bord d’un domaine strictement pseudoconvexe D de dimension N, où la valeur absolue d’une fonction f de A(D) ou de Ak(D) prend son maximum. Ces ensembles sont les maximum modulus sets du titre. Si ΣbD est une variété différentiable de dimension réelle N, et si Σ est l’ensemble des points où la valeur absolue d’une fonction fA2(D) atteint son maximum, alors Σ est totalement réelle et elle admet une structure feuilletée avec comme feuilles des variétés compactes qui sont des ensembles pics d’interpolation. Il y a une converse partielle dans le cas analytique réel. Deux fonctions de A2(D) qui ont la même variété différentiable de dimension N comme “maximum modulus set”, satisfont une relation analytique, et cette relation est polynomiale si une classe particulière de H1(D,R) s’annule ou si D¯CN est polynomialement convexe. Finalement, pour toute fonction fA(D), la dimension topologique de l’ensemble des points où |f| prend son maximum est au plus N.

We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain D of dimension N. If ΣbD is a smooth manifold of dimension N and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in A2(D) with the same smooth N-dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in H1(D,R) vanishes or if D¯CN is polynomially convex. Finally, the maximum modulus set of an arbitrary fA(D) has dimension, in the topological sense, not exceeding N.

@article{AIF_1981__31_3_37_0,
     author = {Duchamp, Thomas and Stout, Edgar Lee},
     title = {Maximum modulus sets},
     journal = {Annales de l'Institut Fourier},
     pages = {37--69},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {3},
     year = {1981},
     doi = {10.5802/aif.837},
     mrnumber = {83d:32019},
     zbl = {0439.32007},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.837/}
}
TY  - JOUR
AU  - Duchamp, Thomas
AU  - Stout, Edgar Lee
TI  - Maximum modulus sets
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 37
EP  - 69
VL  - 31
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.837/
DO  - 10.5802/aif.837
LA  - en
ID  - AIF_1981__31_3_37_0
ER  - 
%0 Journal Article
%A Duchamp, Thomas
%A Stout, Edgar Lee
%T Maximum modulus sets
%J Annales de l'Institut Fourier
%D 1981
%P 37-69
%V 31
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.837/
%R 10.5802/aif.837
%G en
%F AIF_1981__31_3_37_0
Duchamp, Thomas; Stout, Edgar Lee. Maximum modulus sets. Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 37-69. doi : 10.5802/aif.837. https://www.numdam.org/articles/10.5802/aif.837/

[1] H. Alexander, Polynomial approximation and hulls in sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-74. | MR | Zbl

[2] A. Andreotti and R. Narasimhan, A topological property of Runge pairs, Ann. Math., (2) 76 (1962), 499-509. | MR | Zbl

[3] E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. | MR | Zbl

[4] D.E. Blair, Contact Manifolds in Riemannian Geometry, Springer Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR | Zbl

[5] A. Browder, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc., 67 (1961), 515-516. | MR | Zbl

[6] D. Burns and E.L. Stout, Extending functions from submanifolds of the boundary, Duke Math., J., 43 (1976), 391-404. | MR | Zbl

[7] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99. | Numdam | MR | Zbl

[8] J. Chaumat and A.M. Chollet, Ensembles pics pour A∞ (D), Ann. Inst. Fourier, Grenoble, XXIX (1979), 171-200. | Numdam | MR | Zbl

[9] A.M. Davie and B. Øksendal, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), 81-87. | MR | Zbl

[10] H. Federer, Geometric Measure Theory, Springer-Verlag New York, Inc., New York, 1969. | MR | Zbl

[11] T. Duchamp, The classification of Legendre embeddings, to appear.

[12] J.E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. | MR | Zbl

[13] R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | MR | Zbl

[14] C.D. Hill and G. Taiani, Families of analytic discs in Cn with boundaries on a prescribed CR submanifold, Ann. Scuola Norm. Sup. Pisa Sci., (IV) V, (1978), 327-380. | Numdam | MR | Zbl

[15] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. | MR | Zbl

[16] H. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, 1948. | Zbl

[17] V.S. Klein, Behavior of Holomorphic Functions at Generating Submanifolds of the Boundary, doctoral dissertation, University of Washington, Seattle, 1979.

[18] H.B. Lawson, Lectures on the Quantitative Theory of Foliations, CBMS Regional Conference Series in Mathematics, Number 27, American Mathematical Society, Providence, Rhode Island, 1977. | Zbl

[19] L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading, 1968. | MR | Zbl

[20] J. Milnor, Topology from the Differentiable Viewpoint, University Press of Virginia, Charlottesville, 1965. | MR | Zbl

[21] M. Müller, Geometrisch Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer Gebiete, Bonner Math. Schriften, 78, Bonn, 1975. | Zbl

[22] S.I. Pinchuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. | MR | Zbl

[23] M. Range and Y.-T. Siu, Ck approximation by holomorphic functions and ATT-closed forms on Ck submanifolds of a complex manifold, Math. Ann., 210 (1974), 105-122. | Zbl

[24] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Indust., 1183, Hermann, Paris, 1952. | MR | Zbl

[25] W. Rudin, Peak interpolation manifolds of class C1, Pacific J. Math., 75 (1978), 267-279. | MR | Zbl

[26] W. Rudin, Lectures on the Edge-of-the-Wedge Theorem, CBMS Regional Conference Series in Mathematics, Number 6, American Mathematical Society, Providence, Rhode Island, 1971. | MR | Zbl

[27] W. Rudin and E.L. Stout, Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. | MR | Zbl

[28] A. Sadullaev, A boundary uniqueness theorem in Cn, Math. USSR Sbornik, 30 (1976), 501-514. | Zbl

[29] J. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. | MR | Zbl

[30] B. Shiffman, On the continuation of analytic curves, Math. Ann., 184 (1970), 268-274. | MR | Zbl

[31] N. Sibony, Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Séminaire Pierre Lelong 1975-1976. Springer Lecture Notes in Mathematics, vol. 578, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | Zbl

[32] K. Stein, Analytische Projektion komplexer Mannigfaltigkeiten, Colloque sur les Fonctions de Plusieurs Variables, Brussels, 1953. George Throne, Leige and Masson, Paris, 1953. | Zbl

[32a] K. Stein, Die Existenz Komplexer Basen zu holomorphen Abbildungen, Math. Ann., 136 (1958), 1-8. | MR | Zbl

[33] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. | MR | Zbl

[34] E.L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-on-Hudson and Belmont, 1971. | MR | Zbl

[35] E.L. Stout, Interpolation manifolds, Recent Developments in Several Complex Variables, Annals of Mathematics Studies, to appear. | Zbl

[36] A.E. Tumanov, A peak set for the disc algebra of metric dimension 2.5 in the three-dimensional unit sphere, Math. USSR Izvestija, 11 (1977), 370-377. | MR | Zbl

[37] B.M. Weinstock, Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), 484-488. | MR | Zbl

[38] R.O. Wells, Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann., 179 (1969), 123-129. | MR | Zbl

[39] R.O. Wells, Real analytic subvarieties and holomorphic approximation, Math. Ann., 179 (1969), 130-141. | MR | Zbl

[40] A. Zygmund, Trigonometric Series, vol. I., Cambridge University Press, Cambridge, 1959. | Zbl

  • Kot, Piotr A Peak Set of Hausdorff Dimension 2n − 1 for the Algebra A(D) in the Boundary of a Domain D with C⌃2 Boundary, Complex Analysis and Operator Theory, Volume 18 (2024) no. 4 | DOI:10.1007/s11785-024-01532-2
  • Kot, Piotr Approximation on Slices in Balanced Strictly Convex Domains with C2 boundary, Complex Analysis and Operator Theory, Volume 17 (2023) no. 2 | DOI:10.1007/s11785-022-01321-9
  • Izzo, Alexander J.; Stout, Edgar Lee The convergence of hulls of curves, Mathematische Zeitschrift, Volume 301 (2022) no. 3, p. 3071 | DOI:10.1007/s00209-022-02972-2
  • Stout, Edgar Lee Manifold-Valued Holomorphic Approximation, Canadian Mathematical Bulletin, Volume 54 (2011) no. 2, p. 370 | DOI:10.4153/cmb-2010-103-5
  • Wermer, John Rationally convex sets on the unit sphere in ℂ2, Arkiv för Matematik, Volume 46 (2008) no. 1, p. 183 | DOI:10.1007/s11512-007-0055-8
  • Iordan, Andrei Characterisation of homogeneous polynomials which are constant on complex-tangential curves in the boundary of the unit ball of, Mathematische Annalen, Volume 335 (2006) no. 4, p. 737 | DOI:10.1007/s00208-005-0712-9
  • Cœuré, Gérard; Honvault, Pascal Maximum Modulus Sets and Segre Convexity, Mathematische Nachrichten, Volume 230 (2001) no. 1, p. 37 | DOI:10.1002/1522-2616(200110)230:1<37::aid-mana37>3.0.co;2-l
  • Amar, Eric; Thomas, Pascal J. Finite Interpolation with Minimum Uniform Norm in Cn, Journal of Functional Analysis, Volume 170 (2000) no. 2, p. 512 | DOI:10.1006/jfan.1999.3509
  • Kim, Hong Oh On complex-tangential curves on the unit sphere on C2 and homogeneous polynomials, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 76 (2000) no. 3 | DOI:10.3792/pjaa.76.39
  • Rosay, Jean-Pierre CR functions vanishing on open sets (almost) complex structures and Cohen's example, Indagationes Mathematicae, Volume 9 (1998) no. 2, p. 289 | DOI:10.1016/s0019-3577(98)80025-6
  • Aleksandrov, A. B. Function Theory in the Ball, Several Complex Variables II, Volume 8 (1994), p. 107 | DOI:10.1007/978-3-642-57882-3_3
  • Forstneric, Franc A reflection principle on strongly pseudoconvex domains with generic corners, Mathematische Zeitschrift, Volume 213 (1993) no. 1, p. 49 | DOI:10.1007/bf03025708
  • Iordan, Andrei Maximum modulus sets in pseudoconvex boundaries, Journal of Geometric Analysis, Volume 2 (1992) no. 4, p. 327 | DOI:10.1007/bf02934585
  • Iordan, Andrei Local Peak Sets and Maximum Modulus Sets in Products of Strictly Pseudoconvex Domains, Complex Analysis, Volume 1 (1991), p. 155 | DOI:10.1007/978-3-322-86856-5_25
  • Iordan, Andrei A characterization of totally real generic submanifolds of strictly pseudoconvex boundaries in ? n admitting a local foliation by interpolation submanifolds, Mathematische Annalen, Volume 288 (1990) no. 1, p. 505 | DOI:10.1007/bf01444544
  • Sakai, Akira A characterization of weak pseudoconvexity, Proceedings of the American Mathematical Society, Volume 105 (1989) no. 2, p. 314 | DOI:10.1090/s0002-9939-1989-0933520-7
  • Saerens, Rita Interpolation theory in Cn: A suryey, Complex Analysis, Volume 1268 (1987), p. 158 | DOI:10.1007/bfb0097302
  • Sakai, Akira; Jimbo, Toshiya Interpolation manifolds for products of strictly pseudoconvex domains, Complex Variables, Theory and Application: An International Journal, Volume 8 (1987) no. 3-4, p. 333 | DOI:10.1080/17476938708814242
  • Chaumat, Jacques; Chollet, Anne-Marie Dimension de Hausdorff des ensembles de zéros et d’interpolation pour 𝐴^∞(𝐷), Transactions of the American Mathematical Society, Volume 299 (1987) no. 1, p. 95 | DOI:10.1090/s0002-9947-1987-0869401-x
  • Corach, Gustavo; Suárez, Fernando Daniel Dense morphisms in commutative Banach algebras, Transactions of the American Mathematical Society, Volume 304 (1987) no. 2, p. 537 | DOI:10.1090/s0002-9947-1987-0911084-4
  • Ramey, Wade C. On the behavior of holomorphic functions near maximum modulus sets, Mathematische Annalen, Volume 276 (1986) no. 1, p. 137 | DOI:10.1007/bf01450930
  • Stout, Edgar Lee The dimension of peak-interpolation sets, Proceedings of the American Mathematical Society, Volume 86 (1982) no. 3, p. 413 | DOI:10.1090/s0002-9939-1982-0671206-0

Cité par 22 documents. Sources : Crossref