Writing . E. Stein conjectured
for , and . We prove this conjecture. We prove also a.e. We only assume .
Écrivons . E. Stein a supposé que
pour , et . Nous démontrons cette conjecture. Nous démontrons aussi presque partout. Nous supposons seulement .
@article{AIF_1981__31_3_147_0, author = {Cordoba, Antonio and Lopez-Melero, B.}, title = {Spherical summation: a problem of {E.M.} {Stein}}, journal = {Annales de l'Institut Fourier}, pages = {147--152}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {3}, year = {1981}, doi = {10.5802/aif.842}, mrnumber = {83g:42008}, zbl = {0464.42006}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.842/} }
TY - JOUR AU - Cordoba, Antonio AU - Lopez-Melero, B. TI - Spherical summation: a problem of E.M. Stein JO - Annales de l'Institut Fourier PY - 1981 SP - 147 EP - 152 VL - 31 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.842/ DO - 10.5802/aif.842 LA - en ID - AIF_1981__31_3_147_0 ER -
%0 Journal Article %A Cordoba, Antonio %A Lopez-Melero, B. %T Spherical summation: a problem of E.M. Stein %J Annales de l'Institut Fourier %D 1981 %P 147-152 %V 31 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.842/ %R 10.5802/aif.842 %G en %F AIF_1981__31_3_147_0
Cordoba, Antonio; Lopez-Melero, B. Spherical summation: a problem of E.M. Stein. Annales de l'Institut Fourier, Volume 31 (1981) no. 3, pp. 147-152. doi : 10.5802/aif.842. http://archive.numdam.org/articles/10.5802/aif.842/
[1] Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979). | MR | Zbl
,[2] Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299. | MR | Zbl
and ,[3] The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n° 1, (1977), 1-22. | MR | Zbl
,[4] Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo. | Zbl
,[5] The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336. | MR | Zbl
,Cited by Sources: