Let be a locally compact group, and let be a function norm on such that the space of all locally integrable functions with finite -norm is an invariant solid Banach function space. Consider the space of all functions in of which the right translation is a continuous map from into . Characterizations of the case where is a Riesz ideal of are given in terms of the order-continuity of on certain subspaces of . Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.
Soit un groupe localement compact, et soit une norme de fonctions (c’est-à-dire ayant la propriété de Riesz) sur , telle que le sous-espace , formé des fonctions localement intégrables de -norme bornée, soit un espace de fonctions de Banach invariant et solide (solide dans l’espace de Riesz ). Considérons l’espace , formé des fonctions dans avec une translation à droite qui est une application continue de dans . On trouvera les caractérisations du cas où est un sous-espace solide (un idéal de Riesz). Ces descriptions sont données à l’aide de la continuité pour l’ordre de la norme sur certains sous-espaces de . La discussion entière se déroule et les résultats sont formulés dans le contexte des semi-groupes fondamentaux ayant un élément neutre. Tout groupe localement compact est un cas spécial d’un tel semi-groupe.
@article{AIF_1982__32_2_67_0, author = {Sleijpen, G\'erard L. G.}, title = {The order structure of the space of measures with continuous translation}, journal = {Annales de l'Institut Fourier}, pages = {67--110}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {2}, year = {1982}, doi = {10.5802/aif.873}, mrnumber = {83k:43005}, zbl = {0468.43001}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.873/} }
TY - JOUR AU - Sleijpen, Gérard L. G. TI - The order structure of the space of measures with continuous translation JO - Annales de l'Institut Fourier PY - 1982 SP - 67 EP - 110 VL - 32 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.873/ DO - 10.5802/aif.873 LA - en ID - AIF_1982__32_2_67_0 ER -
%0 Journal Article %A Sleijpen, Gérard L. G. %T The order structure of the space of measures with continuous translation %J Annales de l'Institut Fourier %D 1982 %P 67-110 %V 32 %N 2 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.873/ %R 10.5802/aif.873 %G en %F AIF_1982__32_2_67_0
Sleijpen, Gérard L. G. The order structure of the space of measures with continuous translation. Annales de l'Institut Fourier, Volume 32 (1982) no. 2, pp. 67-110. doi : 10.5802/aif.873. http://archive.numdam.org/articles/10.5802/aif.873/
[1] Algebras of measures on a locally compact semigroup II, J. London Math. Soc. (2), 4 (1972), 685-695. | MR | Zbl
and ,[2] Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., (2), 101 (1977), 209-247. | MR | Zbl
,[3] A note on measures on foundation semigroups with weakly compact orbits, Pac. Journal Math. (1), 81 (1979), 61-69. | MR | Zbl
and ,[4] On translates of L∞-functions, J. London Math. Soc., 36 (1961), 431-432. | MR | Zbl
,[5] Fourier multipliers for certain spaces of functions with compact support, Inventiones Math., 40 (1977), 37-57. | EuDML | MR | Zbl
, and ,[6] On a class of convolution algebras of functions, Ann. Inst. Fourier, Grenoble, 27, 3 (1977), 135-162. | EuDML | Numdam | MR | Zbl
,[7] Multipliers of Banach spaces of functions on groups, Math. Z., 152 (1976), 47-58. | EuDML | MR | Zbl
,[8] A characterization of Wiener's algebra on locally compact groups, Arch. Math., 39 (1977), 136-140. | MR | Zbl
,[9] Topological Riesz-spaces and measure theory, Cambridge Univ. Press, (1974). | MR | Zbl
,[10] On a class of integration spaces, J. London Math. Soc., 34 (1959), 161-172. | MR | Zbl
,[11] The weaky continuous left translations of measures with applications to invariant means, preprint.
,[12] On some group modules related to Wiener's algebra M1, Pac. Journal Math. (2), 55 (1974), 507-520. | Zbl
, and ,[13] Separability of orbits of functions on locally compact groups, Studia Math., 48 (1973), 89-94. | MR | Zbl
, and ,[14] Banach-Lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New-York, (1974). | Zbl
,[15] Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc., (3), 37 (1978), 75-97. | MR | Zbl
,[16] Emaciated sets and measures with continuous translations, Proc. London Math. Soc., (3), 37 (1978), 98-119. | MR | Zbl
,[17] L-multipliers for foundation semigroups with identity element, Proc. London Math. Soc., (3), 39 (1979), 299-330. | MR | Zbl
,[18] The support of the Wiener algebra on stips, Indag. Math., 42 (1980), 61-82. | MR | Zbl
,[19] Lp-spaces on foundation semigroups with identity element, Report 7906, Mathematical Institute, Catholic University, Nijmegen (1979).
,[20] Convolution measure algebras on semigroups, Thesis, Catholic University, Nijmegen (1976).
,Cited by Sources: