Families of functions dominated by distributions of C-classes of mappings
Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 199-217.

Un sous-faisceau du faisceau Ω des germes de fonctions C sur un ouvert Ω de Rn est appelé un faisceau de sous-anneaux C s’il est fermé pour l’opération définie par la composition avec toute fonction C. En comparant avec les investigations de faisceaux d’idéaux de Ω, on étudie la présentabilité finie de certains faisceaux de sous-anneaux C. En particulier, on traite le faisceau défini par la distribution de 𝒞-classes de Mather d’une application C.

A subsheaf of the sheaf Ω of germs C functions over an open subset Ω of Rn is called a sheaf of sub C function. Comparing with the investigations of sheaves of ideals of Ω, we study the finite presentability of certain sheaves of sub C-rings. Especially we treat the sheaf defined by the distribution of Mather’s 𝒞-classes of a C mapping.

@article{AIF_1983__33_2_199_0,
     author = {Ishikawa, Goo},
     title = {Families of functions dominated by distributions of $C$-classes of mappings},
     journal = {Annales de l'Institut Fourier},
     pages = {199--217},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     number = {2},
     year = {1983},
     doi = {10.5802/aif.924},
     mrnumber = {84g:58014},
     zbl = {0488.58004},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.924/}
}
TY  - JOUR
AU  - Ishikawa, Goo
TI  - Families of functions dominated by distributions of $C$-classes of mappings
JO  - Annales de l'Institut Fourier
PY  - 1983
SP  - 199
EP  - 217
VL  - 33
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.924/
DO  - 10.5802/aif.924
LA  - en
ID  - AIF_1983__33_2_199_0
ER  - 
%0 Journal Article
%A Ishikawa, Goo
%T Families of functions dominated by distributions of $C$-classes of mappings
%J Annales de l'Institut Fourier
%D 1983
%P 199-217
%V 33
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.924/
%R 10.5802/aif.924
%G en
%F AIF_1983__33_2_199_0
Ishikawa, Goo. Families of functions dominated by distributions of $C$-classes of mappings. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 199-217. doi : 10.5802/aif.924. https://www.numdam.org/articles/10.5802/aif.924/

[1] E. J. Dubuc, C∞ schemes, Amer. J. Math., 103 (1981), 683-690. | MR | Zbl

[2] A. M. Gabrielov, Formal relations between analytic functions, Math. USSR. Izv., 7 (1973), 1056-1088. | Zbl

[3] S. Izumi, Zeros of ideals of Cr functions, J. Math. Kyoto Univ., 17 (1977), 413-424. | MR | Zbl

[4] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, (1966).

[5] J. N. Mather, Stability of C∞ mappings, III : Finitely determined map-germs, Publ. Math. I.H.E.S., 35 (1969), 127-156. | Numdam | Zbl

[6] J. Merrien, Applications des faiseaux analytiques semi-cohérents aux fonctions différentiables, Ann. Inst. Fourier, 31-1 (1981), 63-82. | Numdam | MR | Zbl

[7] R. Moussu and J. Cl. Tougeron, Fonctions composées analytiques et différentiables, C.R.A.S., Paris, 282 (1976), 1237-1240. | MR | Zbl

[8] J. Cl. Tougeron, An extension of Whitney's spectral theorem, Publ. Math. I.H.E.S., 40 (1971), 139-148. | Numdam | MR | Zbl

[9] J. Cl. Tougeron, Idéaux de fonctions différentiables, Ergebnisse Der Mathematik, Band 71, Springer (1972). | MR | Zbl

Cité par Sources :