Families of functions dominated by distributions of C-classes of mappings
Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 199-217.

Un sous-faisceau du faisceau Ω des germes de fonctions C sur un ouvert Ω de R n est appelé un faisceau de sous-anneaux C s’il est fermé pour l’opération définie par la composition avec toute fonction C . En comparant avec les investigations de faisceaux d’idéaux de Ω , on étudie la présentabilité finie de certains faisceaux de sous-anneaux C . En particulier, on traite le faisceau défini par la distribution de 𝒞-classes de Mather d’une application C .

A subsheaf of the sheaf Ω of germs C functions over an open subset Ω of R n is called a sheaf of sub C function. Comparing with the investigations of sheaves of ideals of Ω , we study the finite presentability of certain sheaves of sub C -rings. Especially we treat the sheaf defined by the distribution of Mather’s 𝒞-classes of a C mapping.

@article{AIF_1983__33_2_199_0,
     author = {Ishikawa, Goo},
     title = {Families of functions dominated by distributions of $C$-classes of mappings},
     journal = {Annales de l'Institut Fourier},
     pages = {199--217},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     number = {2},
     year = {1983},
     doi = {10.5802/aif.924},
     mrnumber = {84g:58014},
     zbl = {0488.58004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.924/}
}
TY  - JOUR
AU  - Ishikawa, Goo
TI  - Families of functions dominated by distributions of $C$-classes of mappings
JO  - Annales de l'Institut Fourier
PY  - 1983
SP  - 199
EP  - 217
VL  - 33
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.924/
DO  - 10.5802/aif.924
LA  - en
ID  - AIF_1983__33_2_199_0
ER  - 
%0 Journal Article
%A Ishikawa, Goo
%T Families of functions dominated by distributions of $C$-classes of mappings
%J Annales de l'Institut Fourier
%D 1983
%P 199-217
%V 33
%N 2
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.924/
%R 10.5802/aif.924
%G en
%F AIF_1983__33_2_199_0
Ishikawa, Goo. Families of functions dominated by distributions of $C$-classes of mappings. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 199-217. doi : 10.5802/aif.924. http://archive.numdam.org/articles/10.5802/aif.924/

[1] E. J. Dubuc, C∞ schemes, Amer. J. Math., 103 (1981), 683-690. | MR | Zbl

[2] A. M. Gabrielov, Formal relations between analytic functions, Math. USSR. Izv., 7 (1973), 1056-1088. | Zbl

[3] S. Izumi, Zeros of ideals of Cr functions, J. Math. Kyoto Univ., 17 (1977), 413-424. | MR | Zbl

[4] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, (1966).

[5] J. N. Mather, Stability of C∞ mappings, III : Finitely determined map-germs, Publ. Math. I.H.E.S., 35 (1969), 127-156. | Numdam | Zbl

[6] J. Merrien, Applications des faiseaux analytiques semi-cohérents aux fonctions différentiables, Ann. Inst. Fourier, 31-1 (1981), 63-82. | Numdam | MR | Zbl

[7] R. Moussu and J. Cl. Tougeron, Fonctions composées analytiques et différentiables, C.R.A.S., Paris, 282 (1976), 1237-1240. | MR | Zbl

[8] J. Cl. Tougeron, An extension of Whitney's spectral theorem, Publ. Math. I.H.E.S., 40 (1971), 139-148. | Numdam | MR | Zbl

[9] J. Cl. Tougeron, Idéaux de fonctions différentiables, Ergebnisse Der Mathematik, Band 71, Springer (1972). | MR | Zbl

Cité par Sources :