Soit un ouvert de , de classe près de , une fonction holomorphe convenable près de . Sachant que l’on sait résoudre (voir [M. Derridj, Annali.Sci. Norm. Pisa, Série IV, vol. IX (1981)]) le problème : forme donnée dans , fermée) dans avec supp, on déduit un résultat d’extension de fonctions sur , en fonctions holomorphes dans .
Let an open set in near , a suitable holomorphic function near . If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : , ( is a form, closed in in with supp, then we deduce an extension result for functions on , as holomorphic fonctions in .
@article{AIF_1983__33_3_113_0, author = {Derridj, Makhlouf and Fornaess, John Erik}, title = {A result on extension of {C.R.} functions}, journal = {Annales de l'Institut Fourier}, pages = {113--120}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {3}, year = {1983}, doi = {10.5802/aif.933}, mrnumber = {85f:32031}, zbl = {0518.32010}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.933/} }
TY - JOUR AU - Derridj, Makhlouf AU - Fornaess, John Erik TI - A result on extension of C.R. functions JO - Annales de l'Institut Fourier PY - 1983 SP - 113 EP - 120 VL - 33 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.933/ DO - 10.5802/aif.933 LA - en ID - AIF_1983__33_3_113_0 ER -
%0 Journal Article %A Derridj, Makhlouf %A Fornaess, John Erik %T A result on extension of C.R. functions %J Annales de l'Institut Fourier %D 1983 %P 113-120 %V 33 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.933/ %R 10.5802/aif.933 %G en %F AIF_1983__33_3_113_0
Derridj, Makhlouf; Fornaess, John Erik. A result on extension of C.R. functions. Annales de l'Institut Fourier, Tome 33 (1983) no. 3, pp. 113-120. doi : 10.5802/aif.933. http://archive.numdam.org/articles/10.5802/aif.933/
[1] E.E. convexity and the H. Lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Normale Sup. di Pisa, 26 (1972). | Numdam | Zbl
and ,[2] Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. IHES, vol. 24-25. | Numdam | MR | Zbl
and ,[3] A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. Math., 113 (1981). | MR | Zbl
and ,[4] Local extension of C.R. function from weakly pseudoconvex boundaries, Michigan Math. J., 25. | MR | Zbl
and ,[5] C.R. extendability near a point where the first leviform vanishes, Duke Math. J., 43 (3). | Zbl
,[6] Inégalités de Carleman et extension locale des fonctions holomorphes, Annali. Sci. Norm. Pisa, Serie IV vol. IX (1981). | Numdam | Zbl
,[7] Families of analytic discs in Cn with boundaries on a prescribed C.R. submanifold, Ann. Scuola Norm. Pisa, 4-5 (1978). | Numdam | Zbl
and ,[8] Introduction to complex analysis in several variables, van Nostrand. | Zbl
,[9] L²-estimates and existence theorems for the ∂-operator, Acta Math., 113 (1965). | MR | Zbl
,[10] On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math., 81 (1965). | MR | Zbl
and ,[11] On the local character... Ann. Math., 64 (1956).
,[12] On the Lewy extension phenomenon, Trans. Amer. Math. Soc., 168 (1972). | MR | Zbl
,[13] On the local holomorphic hull... Comm. P.A.M., vol. XIX (1966). | Zbl
,Cité par Sources :